How FaR Are Large Language Models From Agents with Theory-of-Mind? Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.03051
"Thinking is for Doing." Humans can infer other people's mental states from observations--an ability called Theory-of-Mind (ToM)--and subsequently act pragmatically on those inferences. Existing question answering benchmarks such as ToMi ask models questions to make inferences about beliefs of characters in a story, but do not test whether models can then use these inferences to guide their actions. We propose a new evaluation paradigm for large language models (LLMs): Thinking for Doing (T4D), which requires models to connect inferences about others' mental states to actions in social scenarios. Experiments on T4D demonstrate that LLMs such as GPT-4 and PaLM 2 seemingly excel at tracking characters' beliefs in stories, but they struggle to translate this capability into strategic action. Our analysis reveals the core challenge for LLMs lies in identifying the implicit inferences about mental states without being explicitly asked about as in ToMi, that lead to choosing the correct action in T4D. To bridge this gap, we introduce a zero-shot prompting framework, Foresee and Reflect (FaR), which provides a reasoning structure that encourages LLMs to anticipate future challenges and reason about potential actions. FaR boosts GPT-4's performance from 50% to 71% on T4D, outperforming other prompting methods such as Chain-of-Thought and Self-Ask. Moreover, FaR generalizes to diverse out-of-distribution story structures and scenarios that also require ToM inferences to choose an action, consistently outperforming other methods including few-shot in-context learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.03051
- https://arxiv.org/pdf/2310.03051
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387427450
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387427450Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.03051Digital Object Identifier
- Title
-
How FaR Are Large Language Models From Agents with Theory-of-Mind?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-04Full publication date if available
- Authors
-
Pei Zhou, Aman Madaan, Srividya Pranavi Potharaju, Aditya Gupta, Kevin R. McKee, Ari Holtzman, Jay Pujara, Xiang Ren, Swaroop Mishra, Aida Nematzadeh, Shyam Upadhyay, Manaal FaruquiList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.03051Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.03051Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.03051Direct OA link when available
- Concepts
-
Action (physics), Context (archaeology), Shot (pellet), Inference, Computer science, Cognitive science, Artificial intelligence, Psychology, Epistemology, History, Archaeology, Organic chemistry, Chemistry, Quantum mechanics, Physics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387427450 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.03051 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.03051 |
| ids.openalex | https://openalex.org/W4387427450 |
| fwci | |
| type | preprint |
| title | How FaR Are Large Language Models From Agents with Theory-of-Mind? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T13910 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.973800003528595 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3300 |
| topics[1].subfield.display_name | General Social Sciences |
| topics[1].display_name | Computational and Text Analysis Methods |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9703999757766724 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780791683 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6550222635269165 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[0].display_name | Action (physics) |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6290075778961182 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C2778344882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.44589167833328247 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[2].display_name | Shot (pellet) |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4235707223415375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.420075386762619 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C188147891 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41444146633148193 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[5].display_name | Cognitive science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38485029339790344 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3709614872932434 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C111472728 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34574633836746216 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[8].display_name | Epistemology |
| concepts[9].id | https://openalex.org/C95457728 |
| concepts[9].level | 0 |
| concepts[9].score | 0.13500180840492249 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[9].display_name | History |
| concepts[10].id | https://openalex.org/C166957645 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[10].display_name | Archaeology |
| concepts[11].id | https://openalex.org/C178790620 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[11].display_name | Organic chemistry |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/action |
| keywords[0].score | 0.6550222635269165 |
| keywords[0].display_name | Action (physics) |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.6290075778961182 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/shot |
| keywords[2].score | 0.44589167833328247 |
| keywords[2].display_name | Shot (pellet) |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.4235707223415375 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.420075386762619 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/cognitive-science |
| keywords[5].score | 0.41444146633148193 |
| keywords[5].display_name | Cognitive science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.38485029339790344 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.3709614872932434 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/epistemology |
| keywords[8].score | 0.34574633836746216 |
| keywords[8].display_name | Epistemology |
| keywords[9].id | https://openalex.org/keywords/history |
| keywords[9].score | 0.13500180840492249 |
| keywords[9].display_name | History |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.03051 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.03051 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.03051 |
| locations[1].id | doi:10.48550/arxiv.2310.03051 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.03051 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5070613964 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1631-3637 |
| authorships[0].author.display_name | Pei Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhou, Pei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085667632 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aman Madaan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Madaan, Aman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013612372 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Srividya Pranavi Potharaju |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Potharaju, Srividya Pranavi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044999568 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6223-6997 |
| authorships[3].author.display_name | Aditya Gupta |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gupta, Aditya |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5013841168 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4412-1686 |
| authorships[4].author.display_name | Kevin R. McKee |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | McKee, Kevin R. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5063151917 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ari Holtzman |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Holtzman, Ari |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5073443117 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6921-1744 |
| authorships[6].author.display_name | Jay Pujara |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Pujara, Jay |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5009408707 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8655-663X |
| authorships[7].author.display_name | Xiang Ren |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ren, Xiang |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5063722751 |
| authorships[8].author.orcid | https://orcid.org/0009-0001-6413-7001 |
| authorships[8].author.display_name | Swaroop Mishra |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Mishra, Swaroop |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5052196188 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Aida Nematzadeh |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Nematzadeh, Aida |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5056769987 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Shyam Upadhyay |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Upadhyay, Shyam |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5014855689 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Manaal Faruqui |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Faruqui, Manaal |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.03051 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | How FaR Are Large Language Models From Agents with Theory-of-Mind? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2074502265, https://openalex.org/W4214877189, https://openalex.org/W2773965352, https://openalex.org/W2381179799, https://openalex.org/W2980279061, https://openalex.org/W2334685461, https://openalex.org/W2366718574, https://openalex.org/W2359774528, https://openalex.org/W4298312966, https://openalex.org/W2325697621 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.03051 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.03051 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.03051 |
| primary_location.id | pmh:oai:arXiv.org:2310.03051 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.03051 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.03051 |
| publication_date | 2023-10-04 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 99 |
| abstract_inverted_index.a | 41, 60, 158, 168 |
| abstract_inverted_index.To | 152 |
| abstract_inverted_index.We | 58 |
| abstract_inverted_index.an | 219 |
| abstract_inverted_index.as | 28, 95, 140, 198 |
| abstract_inverted_index.at | 102 |
| abstract_inverted_index.do | 44 |
| abstract_inverted_index.in | 40, 85, 106, 127, 141, 150 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 38 |
| abstract_inverted_index.on | 20, 89, 191 |
| abstract_inverted_index.to | 33, 54, 76, 83, 111, 145, 174, 189, 205, 217 |
| abstract_inverted_index.we | 156 |
| abstract_inverted_index.50% | 188 |
| abstract_inverted_index.71% | 190 |
| abstract_inverted_index.FaR | 183, 203 |
| abstract_inverted_index.Our | 118 |
| abstract_inverted_index.T4D | 90 |
| abstract_inverted_index.ToM | 215 |
| abstract_inverted_index.act | 18 |
| abstract_inverted_index.and | 97, 163, 178, 200, 210 |
| abstract_inverted_index.ask | 30 |
| abstract_inverted_index.but | 43, 108 |
| abstract_inverted_index.can | 5, 49 |
| abstract_inverted_index.for | 2, 64, 70, 124 |
| abstract_inverted_index.new | 61 |
| abstract_inverted_index.not | 45 |
| abstract_inverted_index.the | 121, 129, 147 |
| abstract_inverted_index.use | 51 |
| abstract_inverted_index.LLMs | 93, 125, 173 |
| abstract_inverted_index.PaLM | 98 |
| abstract_inverted_index.T4D, | 192 |
| abstract_inverted_index.T4D. | 151 |
| abstract_inverted_index.ToMi | 29 |
| abstract_inverted_index.also | 213 |
| abstract_inverted_index.core | 122 |
| abstract_inverted_index.from | 11, 187 |
| abstract_inverted_index.gap, | 155 |
| abstract_inverted_index.into | 115 |
| abstract_inverted_index.lead | 144 |
| abstract_inverted_index.lies | 126 |
| abstract_inverted_index.make | 34 |
| abstract_inverted_index.such | 27, 94, 197 |
| abstract_inverted_index.test | 46 |
| abstract_inverted_index.that | 92, 143, 171, 212 |
| abstract_inverted_index.then | 50 |
| abstract_inverted_index.they | 109 |
| abstract_inverted_index.this | 113, 154 |
| abstract_inverted_index.Doing | 71 |
| abstract_inverted_index.GPT-4 | 96 |
| abstract_inverted_index.ToMi, | 142 |
| abstract_inverted_index.about | 36, 79, 132, 139, 180 |
| abstract_inverted_index.asked | 138 |
| abstract_inverted_index.being | 136 |
| abstract_inverted_index.excel | 101 |
| abstract_inverted_index.guide | 55 |
| abstract_inverted_index.infer | 6 |
| abstract_inverted_index.large | 65 |
| abstract_inverted_index.other | 7, 194, 223 |
| abstract_inverted_index.story | 208 |
| abstract_inverted_index.their | 56 |
| abstract_inverted_index.these | 52 |
| abstract_inverted_index.those | 21 |
| abstract_inverted_index.which | 73, 166 |
| abstract_inverted_index.(FaR), | 165 |
| abstract_inverted_index.(T4D), | 72 |
| abstract_inverted_index.Humans | 4 |
| abstract_inverted_index.action | 149 |
| abstract_inverted_index.boosts | 184 |
| abstract_inverted_index.bridge | 153 |
| abstract_inverted_index.called | 14 |
| abstract_inverted_index.choose | 218 |
| abstract_inverted_index.future | 176 |
| abstract_inverted_index.mental | 9, 81, 133 |
| abstract_inverted_index.models | 31, 48, 67, 75 |
| abstract_inverted_index.reason | 179 |
| abstract_inverted_index.social | 86 |
| abstract_inverted_index.states | 10, 82, 134 |
| abstract_inverted_index.story, | 42 |
| abstract_inverted_index.(LLMs): | 68 |
| abstract_inverted_index.Doing." | 3 |
| abstract_inverted_index.Foresee | 162 |
| abstract_inverted_index.GPT-4's | 185 |
| abstract_inverted_index.Reflect | 164 |
| abstract_inverted_index.ability | 13 |
| abstract_inverted_index.action, | 220 |
| abstract_inverted_index.action. | 117 |
| abstract_inverted_index.actions | 84 |
| abstract_inverted_index.beliefs | 37, 105 |
| abstract_inverted_index.connect | 77 |
| abstract_inverted_index.correct | 148 |
| abstract_inverted_index.diverse | 206 |
| abstract_inverted_index.methods | 196, 224 |
| abstract_inverted_index.others' | 80 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.require | 214 |
| abstract_inverted_index.reveals | 120 |
| abstract_inverted_index.whether | 47 |
| abstract_inverted_index.without | 135 |
| abstract_inverted_index.Existing | 23 |
| abstract_inverted_index.Thinking | 69 |
| abstract_inverted_index.actions. | 57, 182 |
| abstract_inverted_index.analysis | 119 |
| abstract_inverted_index.choosing | 146 |
| abstract_inverted_index.few-shot | 226 |
| abstract_inverted_index.implicit | 130 |
| abstract_inverted_index.language | 66 |
| abstract_inverted_index.paradigm | 63 |
| abstract_inverted_index.people's | 8 |
| abstract_inverted_index.provides | 167 |
| abstract_inverted_index.question | 24 |
| abstract_inverted_index.requires | 74 |
| abstract_inverted_index.stories, | 107 |
| abstract_inverted_index.struggle | 110 |
| abstract_inverted_index.tracking | 103 |
| abstract_inverted_index."Thinking | 0 |
| abstract_inverted_index.Moreover, | 202 |
| abstract_inverted_index.Self-Ask. | 201 |
| abstract_inverted_index.answering | 25 |
| abstract_inverted_index.challenge | 123 |
| abstract_inverted_index.including | 225 |
| abstract_inverted_index.introduce | 157 |
| abstract_inverted_index.learning. | 228 |
| abstract_inverted_index.potential | 181 |
| abstract_inverted_index.prompting | 160, 195 |
| abstract_inverted_index.questions | 32 |
| abstract_inverted_index.reasoning | 169 |
| abstract_inverted_index.scenarios | 211 |
| abstract_inverted_index.seemingly | 100 |
| abstract_inverted_index.strategic | 116 |
| abstract_inverted_index.structure | 170 |
| abstract_inverted_index.translate | 112 |
| abstract_inverted_index.zero-shot | 159 |
| abstract_inverted_index.(ToM)--and | 16 |
| abstract_inverted_index.anticipate | 175 |
| abstract_inverted_index.benchmarks | 26 |
| abstract_inverted_index.capability | 114 |
| abstract_inverted_index.challenges | 177 |
| abstract_inverted_index.characters | 39 |
| abstract_inverted_index.encourages | 172 |
| abstract_inverted_index.evaluation | 62 |
| abstract_inverted_index.explicitly | 137 |
| abstract_inverted_index.framework, | 161 |
| abstract_inverted_index.in-context | 227 |
| abstract_inverted_index.inferences | 35, 53, 78, 131, 216 |
| abstract_inverted_index.scenarios. | 87 |
| abstract_inverted_index.structures | 209 |
| abstract_inverted_index.Experiments | 88 |
| abstract_inverted_index.characters' | 104 |
| abstract_inverted_index.demonstrate | 91 |
| abstract_inverted_index.generalizes | 204 |
| abstract_inverted_index.identifying | 128 |
| abstract_inverted_index.inferences. | 22 |
| abstract_inverted_index.performance | 186 |
| abstract_inverted_index.consistently | 221 |
| abstract_inverted_index.subsequently | 17 |
| abstract_inverted_index.outperforming | 193, 222 |
| abstract_inverted_index.pragmatically | 19 |
| abstract_inverted_index.Theory-of-Mind | 15 |
| abstract_inverted_index.Chain-of-Thought | 199 |
| abstract_inverted_index.observations--an | 12 |
| abstract_inverted_index.out-of-distribution | 207 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile |