How Fast can BERT Learn Simple Natural Language Inference? Article Swipe
Yi‐Chung Lin
,
Keh‐Yih Su
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2021.eacl-main.51
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2021.eacl-main.51
This paper empirically studies whether BERT can really learn to conduct natural language inference (NLI) without utilizing hidden dataset bias; and how efficiently it can learn if it could. This is done via creating a simple entailment judgment case which involves only binary predicates in plain English. The results show that the learning process of BERT is very slow. However, the efficiency of learning can be greatly improved (data reduction by a factor of 1,500) if task-related features are added. This suggests that domain knowledge greatly helps when conducting NLI with neural networks.
Related Topics
Concepts
Computer science
Inference
Artificial intelligence
Task (project management)
Simple (philosophy)
Natural language processing
Natural language
Process (computing)
Logical consequence
Textual entailment
Domain (mathematical analysis)
Binary number
Natural (archaeology)
Artificial neural network
Machine learning
Programming language
Arithmetic
History
Mathematics
Epistemology
Philosophy
Mathematical analysis
Archaeology
Management
Economics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2021.eacl-main.51
- https://aclanthology.org/2021.eacl-main.51.pdf
- OA Status
- gold
- Cited By
- 8
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3154482395
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3154482395Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2021.eacl-main.51Digital Object Identifier
- Title
-
How Fast can BERT Learn Simple Natural Language Inference?Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Yi‐Chung Lin, Keh‐Yih SuList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2021.eacl-main.51Publisher landing page
- PDF URL
-
https://aclanthology.org/2021.eacl-main.51.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2021.eacl-main.51.pdfDirect OA link when available
- Concepts
-
Computer science, Inference, Artificial intelligence, Task (project management), Simple (philosophy), Natural language processing, Natural language, Process (computing), Logical consequence, Textual entailment, Domain (mathematical analysis), Binary number, Natural (archaeology), Artificial neural network, Machine learning, Programming language, Arithmetic, History, Mathematics, Epistemology, Philosophy, Mathematical analysis, Archaeology, Management, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 4, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3154482395 |
|---|---|
| doi | https://doi.org/10.18653/v1/2021.eacl-main.51 |
| ids.doi | https://doi.org/10.18653/v1/2021.eacl-main.51 |
| ids.mag | 3154482395 |
| ids.openalex | https://openalex.org/W3154482395 |
| fwci | 0.84662145 |
| type | article |
| title | How Fast can BERT Learn Simple Natural Language Inference? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 633 |
| biblio.first_page | 626 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T10201 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9945999979972839 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8391774892807007 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6967824101448059 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6704915761947632 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6619967222213745 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C2780586882 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6189234852790833 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[4].display_name | Simple (philosophy) |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5962701439857483 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C195324797 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5503309965133667 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[6].display_name | Natural language |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5496269464492798 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C134752490 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5294278264045715 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q374182 |
| concepts[8].display_name | Logical consequence |
| concepts[9].id | https://openalex.org/C95318506 |
| concepts[9].level | 3 |
| concepts[9].score | 0.47736215591430664 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6588467 |
| concepts[9].display_name | Textual entailment |
| concepts[10].id | https://openalex.org/C36503486 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47079482674598694 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[10].display_name | Domain (mathematical analysis) |
| concepts[11].id | https://openalex.org/C48372109 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4614824652671814 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[11].display_name | Binary number |
| concepts[12].id | https://openalex.org/C2776608160 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4315921664237976 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4785462 |
| concepts[12].display_name | Natural (archaeology) |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.421994686126709 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.41497549414634705 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.16053807735443115 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C94375191 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08049571514129639 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[16].display_name | Arithmetic |
| concepts[17].id | https://openalex.org/C95457728 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[17].display_name | History |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C111472728 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[19].display_name | Epistemology |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| concepts[22].id | https://openalex.org/C166957645 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[22].display_name | Archaeology |
| concepts[23].id | https://openalex.org/C187736073 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[23].display_name | Management |
| concepts[24].id | https://openalex.org/C162324750 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[24].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8391774892807007 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6967824101448059 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6704915761947632 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.6619967222213745 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/simple |
| keywords[4].score | 0.6189234852790833 |
| keywords[4].display_name | Simple (philosophy) |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.5962701439857483 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/natural-language |
| keywords[6].score | 0.5503309965133667 |
| keywords[6].display_name | Natural language |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.5496269464492798 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/logical-consequence |
| keywords[8].score | 0.5294278264045715 |
| keywords[8].display_name | Logical consequence |
| keywords[9].id | https://openalex.org/keywords/textual-entailment |
| keywords[9].score | 0.47736215591430664 |
| keywords[9].display_name | Textual entailment |
| keywords[10].id | https://openalex.org/keywords/domain |
| keywords[10].score | 0.47079482674598694 |
| keywords[10].display_name | Domain (mathematical analysis) |
| keywords[11].id | https://openalex.org/keywords/binary-number |
| keywords[11].score | 0.4614824652671814 |
| keywords[11].display_name | Binary number |
| keywords[12].id | https://openalex.org/keywords/natural |
| keywords[12].score | 0.4315921664237976 |
| keywords[12].display_name | Natural (archaeology) |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.421994686126709 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.41497549414634705 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/programming-language |
| keywords[15].score | 0.16053807735443115 |
| keywords[15].display_name | Programming language |
| keywords[16].id | https://openalex.org/keywords/arithmetic |
| keywords[16].score | 0.08049571514129639 |
| keywords[16].display_name | Arithmetic |
| language | en |
| locations[0].id | doi:10.18653/v1/2021.eacl-main.51 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2021.eacl-main.51.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2021.eacl-main.51 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058441595 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0352-2694 |
| authorships[0].author.display_name | Yi‐Chung Lin |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210098366 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Information Science Academia Sinica, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I4210098366 |
| authorships[0].institutions[0].ror | https://ror.org/00z83z196 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210098366, https://openalex.org/I84653119 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | Institute of Information Science, Academia Sinica |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yi-Chung Lin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Information Science Academia Sinica, Taiwan |
| authorships[1].author.id | https://openalex.org/A5070399630 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2838-1362 |
| authorships[1].author.display_name | Keh‐Yih Su |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210098366 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Information Science Academia Sinica, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I4210098366 |
| authorships[1].institutions[0].ror | https://ror.org/00z83z196 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210098366, https://openalex.org/I84653119 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | Institute of Information Science, Academia Sinica |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Keh-Yih Su |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Institute of Information Science Academia Sinica, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2021.eacl-main.51.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | How Fast can BERT Learn Simple Natural Language Inference? |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2169644218, https://openalex.org/W12963412, https://openalex.org/W2250460949, https://openalex.org/W3158371345, https://openalex.org/W3141423438, https://openalex.org/W2071098659, https://openalex.org/W2627035043, https://openalex.org/W4385571113, https://openalex.org/W2937401546, https://openalex.org/W2784994561 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2021.eacl-main.51 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2021.eacl-main.51.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2021.eacl-main.51 |
| primary_location.id | doi:10.18653/v1/2021.eacl-main.51 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2021.eacl-main.51.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2021.eacl-main.51 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2955315229, https://openalex.org/W2891012317, https://openalex.org/W2970438301, https://openalex.org/W2962736243, https://openalex.org/W2788496822, https://openalex.org/W2891555348, https://openalex.org/W4288548690, https://openalex.org/W3035507081, https://openalex.org/W2614311475, https://openalex.org/W2251869843, https://openalex.org/W2756386045, https://openalex.org/W1814328102, https://openalex.org/W2963846996, https://openalex.org/W2950700477, https://openalex.org/W2970597249, https://openalex.org/W2889787757, https://openalex.org/W2987553933, https://openalex.org/W2962985038, https://openalex.org/W2963341956, https://openalex.org/W2963719234, https://openalex.org/W2951286828, https://openalex.org/W2396767181, https://openalex.org/W2962843521, https://openalex.org/W2970727289, https://openalex.org/W4288347855, https://openalex.org/W2548036585, https://openalex.org/W2963995027, https://openalex.org/W2963394326, https://openalex.org/W2965373594, https://openalex.org/W2896457183, https://openalex.org/W2946417913, https://openalex.org/W2130158090, https://openalex.org/W2946609015, https://openalex.org/W2963120843, https://openalex.org/W2951936329, https://openalex.org/W2948771346, https://openalex.org/W3102568136, https://openalex.org/W2972324944, https://openalex.org/W2919420119, https://openalex.org/W2963351832, https://openalex.org/W1840435438, https://openalex.org/W2250790822, https://openalex.org/W2798665661 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 34, 71 |
| abstract_inverted_index.be | 65 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.if | 26, 75 |
| abstract_inverted_index.in | 44 |
| abstract_inverted_index.is | 30, 56 |
| abstract_inverted_index.it | 23, 27 |
| abstract_inverted_index.of | 54, 62, 73 |
| abstract_inverted_index.to | 9 |
| abstract_inverted_index.NLI | 89 |
| abstract_inverted_index.The | 47 |
| abstract_inverted_index.and | 20 |
| abstract_inverted_index.are | 78 |
| abstract_inverted_index.can | 6, 24, 64 |
| abstract_inverted_index.how | 21 |
| abstract_inverted_index.the | 51, 60 |
| abstract_inverted_index.via | 32 |
| abstract_inverted_index.BERT | 5, 55 |
| abstract_inverted_index.This | 0, 29, 80 |
| abstract_inverted_index.case | 38 |
| abstract_inverted_index.done | 31 |
| abstract_inverted_index.only | 41 |
| abstract_inverted_index.show | 49 |
| abstract_inverted_index.that | 50, 82 |
| abstract_inverted_index.very | 57 |
| abstract_inverted_index.when | 87 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.(NLI) | 14 |
| abstract_inverted_index.(data | 68 |
| abstract_inverted_index.bias; | 19 |
| abstract_inverted_index.helps | 86 |
| abstract_inverted_index.learn | 8, 25 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.plain | 45 |
| abstract_inverted_index.slow. | 58 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.1,500) | 74 |
| abstract_inverted_index.added. | 79 |
| abstract_inverted_index.binary | 42 |
| abstract_inverted_index.could. | 28 |
| abstract_inverted_index.domain | 83 |
| abstract_inverted_index.factor | 72 |
| abstract_inverted_index.hidden | 17 |
| abstract_inverted_index.neural | 91 |
| abstract_inverted_index.really | 7 |
| abstract_inverted_index.simple | 35 |
| abstract_inverted_index.conduct | 10 |
| abstract_inverted_index.dataset | 18 |
| abstract_inverted_index.greatly | 66, 85 |
| abstract_inverted_index.natural | 11 |
| abstract_inverted_index.process | 53 |
| abstract_inverted_index.results | 48 |
| abstract_inverted_index.studies | 3 |
| abstract_inverted_index.whether | 4 |
| abstract_inverted_index.without | 15 |
| abstract_inverted_index.English. | 46 |
| abstract_inverted_index.However, | 59 |
| abstract_inverted_index.creating | 33 |
| abstract_inverted_index.features | 77 |
| abstract_inverted_index.improved | 67 |
| abstract_inverted_index.involves | 40 |
| abstract_inverted_index.judgment | 37 |
| abstract_inverted_index.language | 12 |
| abstract_inverted_index.learning | 52, 63 |
| abstract_inverted_index.suggests | 81 |
| abstract_inverted_index.inference | 13 |
| abstract_inverted_index.knowledge | 84 |
| abstract_inverted_index.networks. | 92 |
| abstract_inverted_index.reduction | 69 |
| abstract_inverted_index.utilizing | 16 |
| abstract_inverted_index.conducting | 88 |
| abstract_inverted_index.efficiency | 61 |
| abstract_inverted_index.entailment | 36 |
| abstract_inverted_index.predicates | 43 |
| abstract_inverted_index.efficiently | 22 |
| abstract_inverted_index.empirically | 2 |
| abstract_inverted_index.task-related | 76 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5070399630 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I4210098366 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.78251369 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |