How IoT-Driven Citizen Science Coupled with Data Satisficing Can Promote Deep Citizen Science Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22093196
To study and understand the importance of Internet of Things-driven citizen science (IoT-CS) combined with data satisficing, we set up and undertook a citizen science experiment for air quality (AQ) in four Pakistan cities using twenty-one volunteers. We used quantitative methods to analyse the AQ data. Three research questions (RQ) were posed as follows: Which factors affect CS IoT-CS AQ data quality (RQ1)? How can we make science more inclusive by dealing with the lack of scientists, training and high-quality equipment (RQ2)? Can a lack of calibrated data readings be overcome to yield otherwise useful results for IoT-CS AQ data analysis (RQ3)? To address RQ1, an analysis of related work revealed that multiple causal factors exist. Good practice guidelines were adopted to promote higher data quality in CS studies. Additionally, we also proposed a classification of CS instruments to help better understand the data quality challenges. To answer RQ2, user engagement workshops were undertaken as an effective method to make CS more inclusive and also to train users to operate IoT-CS AQ devices more understandably. To address RQ3, it was proposed that a more feasible objective is that citizens leverage data satisficing such that AQ measurements can detect relevant local variations. Additionally, we proposed several recommendations. Our top recommendations are that: a deep (citizen) science approach should be fostered to support a more inclusive, knowledgeable application of science en masse for the greater good; It may not be useful or feasible to cross-check measurements from cheaper versus more expensive calibrated instrument sensors in situ. Hence, data satisficing may be more feasible; additional cross-checks that go beyond checking if co-located low-cost and calibrated AQ measurements correlate under equivalent conditions should be leveraged.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22093196
- https://www.mdpi.com/1424-8220/22/9/3196/pdf?version=1650853621
- OA Status
- gold
- Cited By
- 3
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224325739
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224325739Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22093196Digital Object Identifier
- Title
-
How IoT-Driven Citizen Science Coupled with Data Satisficing Can Promote Deep Citizen ScienceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-21Full publication date if available
- Authors
-
Stefan Poslad, Tayyaba Irum, Patricia Charlton, Rafia Mumtaz, Muhammad Awais Azam, Hassan Zaidi, Christothea Herodotou, Guangxia Yu, Fesal ToosyList of authors in order
- Landing page
-
https://doi.org/10.3390/s22093196Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/9/3196/pdf?version=1650853621Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/9/3196/pdf?version=1650853621Direct OA link when available
- Concepts
-
Citizen science, Satisficing, Data quality, Leverage (statistics), Quality (philosophy), Data science, Computer science, Internet of Things, Big data, Psychology, Data mining, Artificial intelligence, World Wide Web, Business, Marketing, Epistemology, Biology, Botany, Philosophy, Metric (unit)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224325739 |
|---|---|
| doi | https://doi.org/10.3390/s22093196 |
| ids.doi | https://doi.org/10.3390/s22093196 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35590888 |
| ids.openalex | https://openalex.org/W4224325739 |
| fwci | 0.29485311 |
| mesh[0].qualifier_ui | Q000032 |
| mesh[0].descriptor_ui | D000397 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | analysis |
| mesh[0].descriptor_name | Air Pollution |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D002947 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Cities |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000080029 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Citizen Science |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D012107 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Research Design |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D014838 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Volunteers |
| mesh[6].qualifier_ui | Q000032 |
| mesh[6].descriptor_ui | D000397 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | analysis |
| mesh[6].descriptor_name | Air Pollution |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D002947 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Cities |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000080029 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Citizen Science |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D012107 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Research Design |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D014838 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Volunteers |
| type | article |
| title | How IoT-Driven Citizen Science Coupled with Data Satisficing Can Promote Deep Citizen Science |
| biblio.issue | 9 |
| biblio.volume | 22 |
| biblio.last_page | 3196 |
| biblio.first_page | 3196 |
| topics[0].id | https://openalex.org/T12120 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Air Quality Monitoring and Forecasting |
| topics[1].id | https://openalex.org/T10895 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2302 |
| topics[1].subfield.display_name | Ecological Modeling |
| topics[1].display_name | Species Distribution and Climate Change |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C197352329 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8189429044723511 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1093434 |
| concepts[0].display_name | Citizen science |
| concepts[1].id | https://openalex.org/C94822996 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8080309629440308 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1777902 |
| concepts[1].display_name | Satisficing |
| concepts[2].id | https://openalex.org/C24756922 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5433173775672913 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[2].display_name | Data quality |
| concepts[3].id | https://openalex.org/C153083717 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5287156701087952 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[3].display_name | Leverage (statistics) |
| concepts[4].id | https://openalex.org/C2779530757 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4788634479045868 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[4].display_name | Quality (philosophy) |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4768618047237396 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.47102460265159607 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C81860439 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45494982600212097 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[7].display_name | Internet of Things |
| concepts[8].id | https://openalex.org/C75684735 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4134470820426941 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[8].display_name | Big data |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.32137805223464966 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.23277750611305237 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.203828364610672 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1767730414867401 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| concepts[13].id | https://openalex.org/C144133560 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1656540036201477 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[13].display_name | Business |
| concepts[14].id | https://openalex.org/C162853370 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09082797169685364 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[14].display_name | Marketing |
| concepts[15].id | https://openalex.org/C111472728 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[15].display_name | Epistemology |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C59822182 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[17].display_name | Botany |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C176217482 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[19].display_name | Metric (unit) |
| keywords[0].id | https://openalex.org/keywords/citizen-science |
| keywords[0].score | 0.8189429044723511 |
| keywords[0].display_name | Citizen science |
| keywords[1].id | https://openalex.org/keywords/satisficing |
| keywords[1].score | 0.8080309629440308 |
| keywords[1].display_name | Satisficing |
| keywords[2].id | https://openalex.org/keywords/data-quality |
| keywords[2].score | 0.5433173775672913 |
| keywords[2].display_name | Data quality |
| keywords[3].id | https://openalex.org/keywords/leverage |
| keywords[3].score | 0.5287156701087952 |
| keywords[3].display_name | Leverage (statistics) |
| keywords[4].id | https://openalex.org/keywords/quality |
| keywords[4].score | 0.4788634479045868 |
| keywords[4].display_name | Quality (philosophy) |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.4768618047237396 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.47102460265159607 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/internet-of-things |
| keywords[7].score | 0.45494982600212097 |
| keywords[7].display_name | Internet of Things |
| keywords[8].id | https://openalex.org/keywords/big-data |
| keywords[8].score | 0.4134470820426941 |
| keywords[8].display_name | Big data |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.32137805223464966 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.23277750611305237 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.203828364610672 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/world-wide-web |
| keywords[12].score | 0.1767730414867401 |
| keywords[12].display_name | World Wide Web |
| keywords[13].id | https://openalex.org/keywords/business |
| keywords[13].score | 0.1656540036201477 |
| keywords[13].display_name | Business |
| keywords[14].id | https://openalex.org/keywords/marketing |
| keywords[14].score | 0.09082797169685364 |
| keywords[14].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.3390/s22093196 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/9/3196/pdf?version=1650853621 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22093196 |
| locations[1].id | pmid:35590888 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35590888 |
| locations[2].id | pmh:oai:oro.open.ac.uk:82812 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401187 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Open Research Online (The Open University) |
| locations[2].source.host_organization | https://openalex.org/I204136569 |
| locations[2].source.host_organization_name | The Open University |
| locations[2].source.host_organization_lineage | https://openalex.org/I204136569 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | acceptedVersion |
| locations[2].raw_type | Journal Item |
| locations[2].license_id | |
| locations[2].is_accepted | True |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | |
| locations[3].id | pmh:oai:doaj.org/article:6fed96f3a90049d8af1770340afb46eb |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 22, Iss 9, p 3196 (2022) |
| locations[3].landing_page_url | https://doaj.org/article/6fed96f3a90049d8af1770340afb46eb |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/22/9/3196/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 22; Issue 9; Pages: 3196 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s22093196 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:9103927 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Sensors (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9103927 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5018639589 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3156-9609 |
| authorships[0].author.display_name | Stefan Poslad |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166337079 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Electronic Engineering, Queen Mary University of London (QMUL), London E1 4NS, UK |
| authorships[0].institutions[0].id | https://openalex.org/I166337079 |
| authorships[0].institutions[0].ror | https://ror.org/026zzn846 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Queen Mary University of London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stefan Poslad |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Computer Science and Electronic Engineering, Queen Mary University of London (QMUL), London E1 4NS, UK |
| authorships[1].author.id | https://openalex.org/A5017436768 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Tayyaba Irum |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166337079 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Electronic Engineering, Queen Mary University of London (QMUL), London E1 4NS, UK |
| authorships[1].institutions[0].id | https://openalex.org/I166337079 |
| authorships[1].institutions[0].ror | https://ror.org/026zzn846 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Queen Mary University of London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tayyaba Irum |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Electronic Engineering, Queen Mary University of London (QMUL), London E1 4NS, UK |
| authorships[2].author.id | https://openalex.org/A5102705751 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4650-4637 |
| authorships[2].author.display_name | Patricia Charlton |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204136569 |
| authorships[2].affiliations[0].raw_affiliation_string | School Computing and Communication, Institute of Educational Technology, Open University (OU), Milton Keynes MK7 6AA, UK |
| authorships[2].institutions[0].id | https://openalex.org/I204136569 |
| authorships[2].institutions[0].ror | https://ror.org/05mzfcs16 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204136569 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | The Open University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Patricia Charlton |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School Computing and Communication, Institute of Educational Technology, Open University (OU), Milton Keynes MK7 6AA, UK |
| authorships[3].author.id | https://openalex.org/A5057042065 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0966-3957 |
| authorships[3].author.display_name | Rafia Mumtaz |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I929597975 |
| authorships[3].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | National University of Sciences and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rafia Mumtaz |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[4].author.id | https://openalex.org/A5050679807 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0488-4598 |
| authorships[4].author.display_name | Muhammad Awais Azam |
| authorships[4].countries | NZ |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210120792 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Information Technology, Whitecliffe College, Auckland 1010, New Zealand |
| authorships[4].institutions[0].id | https://openalex.org/I4210120792 |
| authorships[4].institutions[0].ror | https://ror.org/02d6ntk65 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210120792 |
| authorships[4].institutions[0].country_code | NZ |
| authorships[4].institutions[0].display_name | Whitecliffe College of Arts and Design |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Muhammad Azam |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Information Technology, Whitecliffe College, Auckland 1010, New Zealand |
| authorships[5].author.id | https://openalex.org/A5003105750 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2806-9483 |
| authorships[5].author.display_name | Hassan Zaidi |
| authorships[5].countries | PK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[5].institutions[0].id | https://openalex.org/I929597975 |
| authorships[5].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[5].institutions[0].country_code | PK |
| authorships[5].institutions[0].display_name | National University of Sciences and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hassan Zaidi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[6].author.id | https://openalex.org/A5052116082 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0980-1632 |
| authorships[6].author.display_name | Christothea Herodotou |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I204136569 |
| authorships[6].affiliations[0].raw_affiliation_string | School Computing and Communication, Institute of Educational Technology, Open University (OU), Milton Keynes MK7 6AA, UK |
| authorships[6].institutions[0].id | https://openalex.org/I204136569 |
| authorships[6].institutions[0].ror | https://ror.org/05mzfcs16 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I204136569 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | The Open University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Christothea Herodotou |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School Computing and Communication, Institute of Educational Technology, Open University (OU), Milton Keynes MK7 6AA, UK |
| authorships[7].author.id | https://openalex.org/A5007803227 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Guangxia Yu |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I166337079 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Computer Science and Electronic Engineering, Queen Mary University of London (QMUL), London E1 4NS, UK |
| authorships[7].institutions[0].id | https://openalex.org/I166337079 |
| authorships[7].institutions[0].ror | https://ror.org/026zzn846 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | Queen Mary University of London |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Guangxia Yu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Computer Science and Electronic Engineering, Queen Mary University of London (QMUL), London E1 4NS, UK |
| authorships[8].author.id | https://openalex.org/A5030450149 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4039-7076 |
| authorships[8].author.display_name | Fesal Toosy |
| authorships[8].countries | PK |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I192392021 |
| authorships[8].affiliations[0].raw_affiliation_string | Faculty of Engineering, University of Central Punjab (UCP), Lahore 54000, Pakistan |
| authorships[8].institutions[0].id | https://openalex.org/I192392021 |
| authorships[8].institutions[0].ror | https://ror.org/04g0mqe67 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I192392021 |
| authorships[8].institutions[0].country_code | PK |
| authorships[8].institutions[0].display_name | University of Central Punjab |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Fesal Toosy |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Faculty of Engineering, University of Central Punjab (UCP), Lahore 54000, Pakistan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/9/3196/pdf?version=1650853621 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | How IoT-Driven Citizen Science Coupled with Data Satisficing Can Promote Deep Citizen Science |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12120 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Air Quality Monitoring and Forecasting |
| related_works | https://openalex.org/W3118038935, https://openalex.org/W2486197377, https://openalex.org/W2672066981, https://openalex.org/W2025499279, https://openalex.org/W96070519, https://openalex.org/W2079941411, https://openalex.org/W3147748563, https://openalex.org/W2891888580, https://openalex.org/W2215544391, https://openalex.org/W4210350690 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s22093196 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/9/3196/pdf?version=1650853621 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22093196 |
| primary_location.id | doi:10.3390/s22093196 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/9/3196/pdf?version=1650853621 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22093196 |
| publication_date | 2022-04-21 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1987172718, https://openalex.org/W2623133424, https://openalex.org/W3118563087, https://openalex.org/W3118667936, https://openalex.org/W2166658986, https://openalex.org/W2039636725, https://openalex.org/W2151915598, https://openalex.org/W2557799658, https://openalex.org/W1989388297, https://openalex.org/W6747574722, https://openalex.org/W2541120129, https://openalex.org/W3015068109, https://openalex.org/W2970303123, https://openalex.org/W3111205636, https://openalex.org/W2566667959, https://openalex.org/W2340895498, https://openalex.org/W2132107950, https://openalex.org/W1977662637, https://openalex.org/W1975635805, https://openalex.org/W2909815585, https://openalex.org/W3172109691, https://openalex.org/W2765891303, https://openalex.org/W4212781379, https://openalex.org/W3206961877, https://openalex.org/W2583091215, https://openalex.org/W2030183039, https://openalex.org/W2234079634, https://openalex.org/W2784891672 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 22, 83, 133, 182, 211, 221 |
| abstract_inverted_index.AQ | 44, 59, 98, 171, 194, 272 |
| abstract_inverted_index.CS | 57, 127, 136, 160 |
| abstract_inverted_index.It | 234 |
| abstract_inverted_index.To | 0, 102, 146, 175 |
| abstract_inverted_index.We | 37 |
| abstract_inverted_index.an | 105, 155 |
| abstract_inverted_index.as | 52, 154 |
| abstract_inverted_index.be | 89, 217, 237, 258, 279 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.en | 228 |
| abstract_inverted_index.go | 264 |
| abstract_inverted_index.if | 267 |
| abstract_inverted_index.in | 30, 126, 252 |
| abstract_inverted_index.is | 186 |
| abstract_inverted_index.it | 178 |
| abstract_inverted_index.of | 6, 8, 75, 85, 107, 135, 226 |
| abstract_inverted_index.or | 239 |
| abstract_inverted_index.to | 41, 91, 121, 138, 158, 165, 168, 219, 241 |
| abstract_inverted_index.up | 19 |
| abstract_inverted_index.we | 17, 65, 130, 202 |
| abstract_inverted_index.Can | 82 |
| abstract_inverted_index.How | 63 |
| abstract_inverted_index.Our | 206 |
| abstract_inverted_index.air | 27 |
| abstract_inverted_index.and | 2, 20, 78, 163, 270 |
| abstract_inverted_index.are | 209 |
| abstract_inverted_index.can | 64, 196 |
| abstract_inverted_index.for | 26, 96, 230 |
| abstract_inverted_index.may | 235, 257 |
| abstract_inverted_index.not | 236 |
| abstract_inverted_index.set | 18 |
| abstract_inverted_index.the | 4, 43, 73, 142, 231 |
| abstract_inverted_index.top | 207 |
| abstract_inverted_index.was | 179 |
| abstract_inverted_index.(AQ) | 29 |
| abstract_inverted_index.(RQ) | 49 |
| abstract_inverted_index.Good | 116 |
| abstract_inverted_index.RQ1, | 104 |
| abstract_inverted_index.RQ2, | 148 |
| abstract_inverted_index.RQ3, | 177 |
| abstract_inverted_index.also | 131, 164 |
| abstract_inverted_index.data | 15, 60, 87, 99, 124, 143, 190, 255 |
| abstract_inverted_index.deep | 212 |
| abstract_inverted_index.four | 31 |
| abstract_inverted_index.from | 244 |
| abstract_inverted_index.help | 139 |
| abstract_inverted_index.lack | 74, 84 |
| abstract_inverted_index.make | 66, 159 |
| abstract_inverted_index.more | 68, 161, 173, 183, 222, 247, 259 |
| abstract_inverted_index.such | 192 |
| abstract_inverted_index.that | 111, 181, 187, 193, 263 |
| abstract_inverted_index.used | 38 |
| abstract_inverted_index.user | 149 |
| abstract_inverted_index.were | 50, 119, 152 |
| abstract_inverted_index.with | 14, 72 |
| abstract_inverted_index.work | 109 |
| abstract_inverted_index.Three | 46 |
| abstract_inverted_index.Which | 54 |
| abstract_inverted_index.data. | 45 |
| abstract_inverted_index.good; | 233 |
| abstract_inverted_index.local | 199 |
| abstract_inverted_index.masse | 229 |
| abstract_inverted_index.posed | 51 |
| abstract_inverted_index.situ. | 253 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.that: | 210 |
| abstract_inverted_index.train | 166 |
| abstract_inverted_index.under | 275 |
| abstract_inverted_index.users | 167 |
| abstract_inverted_index.using | 34 |
| abstract_inverted_index.yield | 92 |
| abstract_inverted_index.(RQ1)? | 62 |
| abstract_inverted_index.(RQ2)? | 81 |
| abstract_inverted_index.(RQ3)? | 101 |
| abstract_inverted_index.Hence, | 254 |
| abstract_inverted_index.IoT-CS | 58, 97, 170 |
| abstract_inverted_index.affect | 56 |
| abstract_inverted_index.answer | 147 |
| abstract_inverted_index.better | 140 |
| abstract_inverted_index.beyond | 265 |
| abstract_inverted_index.causal | 113 |
| abstract_inverted_index.cities | 33 |
| abstract_inverted_index.detect | 197 |
| abstract_inverted_index.exist. | 115 |
| abstract_inverted_index.higher | 123 |
| abstract_inverted_index.method | 157 |
| abstract_inverted_index.should | 216, 278 |
| abstract_inverted_index.useful | 94, 238 |
| abstract_inverted_index.versus | 246 |
| abstract_inverted_index.address | 103, 176 |
| abstract_inverted_index.adopted | 120 |
| abstract_inverted_index.analyse | 42 |
| abstract_inverted_index.cheaper | 245 |
| abstract_inverted_index.citizen | 10, 23 |
| abstract_inverted_index.dealing | 71 |
| abstract_inverted_index.devices | 172 |
| abstract_inverted_index.factors | 55, 114 |
| abstract_inverted_index.greater | 232 |
| abstract_inverted_index.methods | 40 |
| abstract_inverted_index.operate | 169 |
| abstract_inverted_index.promote | 122 |
| abstract_inverted_index.quality | 28, 61, 125, 144 |
| abstract_inverted_index.related | 108 |
| abstract_inverted_index.results | 95 |
| abstract_inverted_index.science | 11, 24, 67, 214, 227 |
| abstract_inverted_index.sensors | 251 |
| abstract_inverted_index.several | 204 |
| abstract_inverted_index.support | 220 |
| abstract_inverted_index.(IoT-CS) | 12 |
| abstract_inverted_index.Internet | 7 |
| abstract_inverted_index.Pakistan | 32 |
| abstract_inverted_index.analysis | 100, 106 |
| abstract_inverted_index.approach | 215 |
| abstract_inverted_index.checking | 266 |
| abstract_inverted_index.citizens | 188 |
| abstract_inverted_index.combined | 13 |
| abstract_inverted_index.feasible | 184, 240 |
| abstract_inverted_index.follows: | 53 |
| abstract_inverted_index.fostered | 218 |
| abstract_inverted_index.leverage | 189 |
| abstract_inverted_index.low-cost | 269 |
| abstract_inverted_index.multiple | 112 |
| abstract_inverted_index.overcome | 90 |
| abstract_inverted_index.practice | 117 |
| abstract_inverted_index.proposed | 132, 180, 203 |
| abstract_inverted_index.readings | 88 |
| abstract_inverted_index.relevant | 198 |
| abstract_inverted_index.research | 47 |
| abstract_inverted_index.revealed | 110 |
| abstract_inverted_index.studies. | 128 |
| abstract_inverted_index.training | 77 |
| abstract_inverted_index.(citizen) | 213 |
| abstract_inverted_index.correlate | 274 |
| abstract_inverted_index.effective | 156 |
| abstract_inverted_index.equipment | 80 |
| abstract_inverted_index.expensive | 248 |
| abstract_inverted_index.feasible; | 260 |
| abstract_inverted_index.inclusive | 69, 162 |
| abstract_inverted_index.objective | 185 |
| abstract_inverted_index.otherwise | 93 |
| abstract_inverted_index.questions | 48 |
| abstract_inverted_index.undertook | 21 |
| abstract_inverted_index.workshops | 151 |
| abstract_inverted_index.additional | 261 |
| abstract_inverted_index.calibrated | 86, 249, 271 |
| abstract_inverted_index.co-located | 268 |
| abstract_inverted_index.conditions | 277 |
| abstract_inverted_index.engagement | 150 |
| abstract_inverted_index.equivalent | 276 |
| abstract_inverted_index.experiment | 25 |
| abstract_inverted_index.guidelines | 118 |
| abstract_inverted_index.importance | 5 |
| abstract_inverted_index.inclusive, | 223 |
| abstract_inverted_index.instrument | 250 |
| abstract_inverted_index.leveraged. | 280 |
| abstract_inverted_index.twenty-one | 35 |
| abstract_inverted_index.understand | 3, 141 |
| abstract_inverted_index.undertaken | 153 |
| abstract_inverted_index.application | 225 |
| abstract_inverted_index.challenges. | 145 |
| abstract_inverted_index.cross-check | 242 |
| abstract_inverted_index.instruments | 137 |
| abstract_inverted_index.satisficing | 191, 256 |
| abstract_inverted_index.scientists, | 76 |
| abstract_inverted_index.variations. | 200 |
| abstract_inverted_index.volunteers. | 36 |
| abstract_inverted_index.cross-checks | 262 |
| abstract_inverted_index.high-quality | 79 |
| abstract_inverted_index.measurements | 195, 243, 273 |
| abstract_inverted_index.quantitative | 39 |
| abstract_inverted_index.satisficing, | 16 |
| abstract_inverted_index.Additionally, | 129, 201 |
| abstract_inverted_index.Things-driven | 9 |
| abstract_inverted_index.knowledgeable | 224 |
| abstract_inverted_index.classification | 134 |
| abstract_inverted_index.recommendations | 208 |
| abstract_inverted_index.understandably. | 174 |
| abstract_inverted_index.recommendations. | 205 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5018639589 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I166337079 |
| citation_normalized_percentile.value | 0.48553354 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |