How to make machine learning scoring functions competitive with FEP Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv-2024-bth5z
Machine learning offers a promising approach for fast and accurate binding affin- ity predictions. However, current models often fail to generalise beyond their training data and are not robustly evaluated on a diverse range of benchmarks, limiting their application in drug discovery projects. In this work, we address these issues by intro- ducing a novel graph neural network model called AEV-PLIG (Atomic Environment Vector - Protein Ligand Interaction Graph), which encodes protein-ligand interactions via atomic environment vectors to improve generalisation. We evaluate our model on improved benchmarks, including our new out-of-distribution test set we call OOD Test, and two alternative benchmark systems used for free energy perturbation (FEP) calculations, and highlight competitive performance of AEV-PLIG across the board. Moreover, we demonstrate how augmented data can be leveraged to enhance predic- tion accuracy, and how enriching the training data with three complexes from a con- generic series of ligands binding to a target of interest improves performance further. Altogether, we show that these strategies improve the applicability of machine learn- ing scoring functions and enable state-of-the-art performance nearing the accuracy of physics-based simulation methods—but at a fraction of their computational cost. This practical approach extends the predictive capabilities of machine learning for molecular discovery, paving the way for its broader use in computer-aided drug design.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv-2024-bth5z
- https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6675a38d5101a2ffa8274f62/original/how-to-make-machine-learning-scoring-functions-competitive-with-fep.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399974989
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399974989Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv-2024-bth5zDigital Object Identifier
- Title
-
How to make machine learning scoring functions competitive with FEPWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-24Full publication date if available
- Authors
-
Matthew T. Warren, ísak Valsson, Charlotte M. Deane, Aniket Magarkar, Garrett M. Morris, Philip C. BigginList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv-2024-bth5zPublisher landing page
- PDF URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6675a38d5101a2ffa8274f62/original/how-to-make-machine-learning-scoring-functions-competitive-with-fep.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6675a38d5101a2ffa8274f62/original/how-to-make-machine-learning-scoring-functions-competitive-with-fep.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Computer science, Machine learning, Psychology, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399974989 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv-2024-bth5z |
| ids.doi | https://doi.org/10.26434/chemrxiv-2024-bth5z |
| ids.openalex | https://openalex.org/W4399974989 |
| fwci | 2.54483474 |
| type | preprint |
| title | How to make machine learning scoring functions competitive with FEP |
| awards[0].id | https://openalex.org/G6908532722 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/S024093/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14470 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.042899999767541885 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Data Processing Techniques |
| funders[0].id | https://openalex.org/F4320310441 |
| funders[0].ror | https://ror.org/00q32j219 |
| funders[0].display_name | Boehringer Ingelheim |
| funders[1].id | https://openalex.org/F4320334627 |
| funders[1].ror | https://ror.org/0439y7842 |
| funders[1].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.4194566011428833 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.40941888093948364 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.40834611654281616 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.35173237323760986 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C162324750 |
| concepts[4].level | 0 |
| concepts[4].score | 0.34120211005210876 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[4].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.4194566011428833 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.40941888093948364 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.40834611654281616 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.35173237323760986 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/economics |
| keywords[4].score | 0.34120211005210876 |
| keywords[4].display_name | Economics |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv-2024-bth5z |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6675a38d5101a2ffa8274f62/original/how-to-make-machine-learning-scoring-functions-competitive-with-fep.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv-2024-bth5z |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038852143 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5860-7468 |
| authorships[0].author.display_name | Matthew T. Warren |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Oxford |
| authorships[0].institutions[0].id | https://openalex.org/I40120149 |
| authorships[0].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Oxford |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthew Warren |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Oxford |
| authorships[1].author.id | https://openalex.org/A5099436739 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | ísak Valsson |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Oxford |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | ísak Valsson |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Oxford |
| authorships[2].author.id | https://openalex.org/A5015572211 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1388-2252 |
| authorships[2].author.display_name | Charlotte M. Deane |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Oxford |
| authorships[2].institutions[0].id | https://openalex.org/I40120149 |
| authorships[2].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Oxford |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Charlotte Deane |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Oxford |
| authorships[3].author.id | https://openalex.org/A5085408487 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3385-964X |
| authorships[3].author.display_name | Aniket Magarkar |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[3].affiliations[0].raw_affiliation_string | Boehringer Ingelheim (Germany) |
| authorships[3].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[3].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aniket Magarkar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Boehringer Ingelheim (Germany) |
| authorships[4].author.id | https://openalex.org/A5011245839 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1731-8405 |
| authorships[4].author.display_name | Garrett M. Morris |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Oxford |
| authorships[4].institutions[0].id | https://openalex.org/I40120149 |
| authorships[4].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Oxford |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Garrett Morris |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Oxford |
| authorships[5].author.id | https://openalex.org/A5034236085 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5100-8836 |
| authorships[5].author.display_name | Philip C. Biggin |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Oxford |
| authorships[5].institutions[0].id | https://openalex.org/I40120149 |
| authorships[5].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University of Oxford |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Philip Biggin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Oxford |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6675a38d5101a2ffa8274f62/original/how-to-make-machine-learning-scoring-functions-competitive-with-fep.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | How to make machine learning scoring functions competitive with FEP |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14470 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.042899999767541885 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Data Processing Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv-2024-bth5z |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6675a38d5101a2ffa8274f62/original/how-to-make-machine-learning-scoring-functions-competitive-with-fep.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2024-bth5z |
| primary_location.id | doi:10.26434/chemrxiv-2024-bth5z |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6675a38d5101a2ffa8274f62/original/how-to-make-machine-learning-scoring-functions-competitive-with-fep.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2024-bth5z |
| publication_date | 2024-06-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4296754363, https://openalex.org/W2161782568, https://openalex.org/W4309773749, https://openalex.org/W4388221506, https://openalex.org/W4388733231, https://openalex.org/W1625910593, https://openalex.org/W4253240521, https://openalex.org/W2154670681, https://openalex.org/W4200139236, https://openalex.org/W4281381643, https://openalex.org/W2772606519, https://openalex.org/W4286795917, https://openalex.org/W4376131268, https://openalex.org/W4396721167, https://openalex.org/W2902812092, https://openalex.org/W4391747328, https://openalex.org/W4233176933, https://openalex.org/W4221095602, https://openalex.org/W4285723986, https://openalex.org/W1998519205, https://openalex.org/W2794875394, https://openalex.org/W4255455335, https://openalex.org/W2781821160, https://openalex.org/W2050273205, https://openalex.org/W2103034037, https://openalex.org/W2117620409, https://openalex.org/W4286740874, https://openalex.org/W2541404351, https://openalex.org/W2073021822, https://openalex.org/W2025444507, https://openalex.org/W2950954328, https://openalex.org/W4317776906, https://openalex.org/W4252783741, https://openalex.org/W2785947426, https://openalex.org/W4385245566, https://openalex.org/W4283013935, https://openalex.org/W3109549311, https://openalex.org/W4390605827, https://openalex.org/W3209909976, https://openalex.org/W3001433048, https://openalex.org/W2148512505, https://openalex.org/W4391972455, https://openalex.org/W2792758786, https://openalex.org/W2730519791, https://openalex.org/W4307405800, https://openalex.org/W4318475704 |
| referenced_works_count | 46 |
| abstract_inverted_index.- | 64 |
| abstract_inverted_index.a | 3, 31, 53, 142, 150, 184 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.We | 80 |
| abstract_inverted_index.at | 183 |
| abstract_inverted_index.be | 125 |
| abstract_inverted_index.by | 50 |
| abstract_inverted_index.in | 39, 210 |
| abstract_inverted_index.of | 34, 113, 146, 152, 166, 179, 186, 197 |
| abstract_inverted_index.on | 30, 84 |
| abstract_inverted_index.to | 19, 77, 127, 149 |
| abstract_inverted_index.we | 46, 93, 119, 158 |
| abstract_inverted_index.OOD | 95 |
| abstract_inverted_index.and | 8, 25, 97, 109, 132, 172 |
| abstract_inverted_index.are | 26 |
| abstract_inverted_index.can | 124 |
| abstract_inverted_index.for | 6, 103, 200, 206 |
| abstract_inverted_index.how | 121, 133 |
| abstract_inverted_index.ing | 169 |
| abstract_inverted_index.its | 207 |
| abstract_inverted_index.ity | 12 |
| abstract_inverted_index.new | 89 |
| abstract_inverted_index.not | 27 |
| abstract_inverted_index.our | 82, 88 |
| abstract_inverted_index.set | 92 |
| abstract_inverted_index.the | 116, 135, 164, 177, 194, 204 |
| abstract_inverted_index.two | 98 |
| abstract_inverted_index.use | 209 |
| abstract_inverted_index.via | 73 |
| abstract_inverted_index.way | 205 |
| abstract_inverted_index.This | 190 |
| abstract_inverted_index.call | 94 |
| abstract_inverted_index.con- | 143 |
| abstract_inverted_index.data | 24, 123, 137 |
| abstract_inverted_index.drug | 40, 212 |
| abstract_inverted_index.fail | 18 |
| abstract_inverted_index.fast | 7 |
| abstract_inverted_index.free | 104 |
| abstract_inverted_index.from | 141 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.test | 91 |
| abstract_inverted_index.that | 160 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.tion | 130 |
| abstract_inverted_index.used | 102 |
| abstract_inverted_index.with | 138 |
| abstract_inverted_index.(FEP) | 107 |
| abstract_inverted_index.Test, | 96 |
| abstract_inverted_index.cost. | 189 |
| abstract_inverted_index.graph | 55 |
| abstract_inverted_index.model | 58, 83 |
| abstract_inverted_index.novel | 54 |
| abstract_inverted_index.often | 17 |
| abstract_inverted_index.range | 33 |
| abstract_inverted_index.their | 22, 37, 187 |
| abstract_inverted_index.these | 48, 161 |
| abstract_inverted_index.three | 139 |
| abstract_inverted_index.which | 69 |
| abstract_inverted_index.work, | 45 |
| abstract_inverted_index.Ligand | 66 |
| abstract_inverted_index.Vector | 63 |
| abstract_inverted_index.across | 115 |
| abstract_inverted_index.affin- | 11 |
| abstract_inverted_index.atomic | 74 |
| abstract_inverted_index.beyond | 21 |
| abstract_inverted_index.board. | 117 |
| abstract_inverted_index.called | 59 |
| abstract_inverted_index.ducing | 52 |
| abstract_inverted_index.enable | 173 |
| abstract_inverted_index.energy | 105 |
| abstract_inverted_index.intro- | 51 |
| abstract_inverted_index.issues | 49 |
| abstract_inverted_index.learn- | 168 |
| abstract_inverted_index.models | 16 |
| abstract_inverted_index.neural | 56 |
| abstract_inverted_index.offers | 2 |
| abstract_inverted_index.paving | 203 |
| abstract_inverted_index.series | 145 |
| abstract_inverted_index.target | 151 |
| abstract_inverted_index.(Atomic | 61 |
| abstract_inverted_index.Graph), | 68 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.Protein | 65 |
| abstract_inverted_index.address | 47 |
| abstract_inverted_index.binding | 10, 148 |
| abstract_inverted_index.broader | 208 |
| abstract_inverted_index.current | 15 |
| abstract_inverted_index.design. | 213 |
| abstract_inverted_index.diverse | 32 |
| abstract_inverted_index.encodes | 70 |
| abstract_inverted_index.enhance | 128 |
| abstract_inverted_index.extends | 193 |
| abstract_inverted_index.generic | 144 |
| abstract_inverted_index.improve | 78, 163 |
| abstract_inverted_index.ligands | 147 |
| abstract_inverted_index.machine | 167, 198 |
| abstract_inverted_index.nearing | 176 |
| abstract_inverted_index.network | 57 |
| abstract_inverted_index.predic- | 129 |
| abstract_inverted_index.scoring | 170 |
| abstract_inverted_index.systems | 101 |
| abstract_inverted_index.vectors | 76 |
| abstract_inverted_index.AEV-PLIG | 60, 114 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.accuracy | 178 |
| abstract_inverted_index.accurate | 9 |
| abstract_inverted_index.approach | 5, 192 |
| abstract_inverted_index.evaluate | 81 |
| abstract_inverted_index.fraction | 185 |
| abstract_inverted_index.further. | 156 |
| abstract_inverted_index.improved | 85 |
| abstract_inverted_index.improves | 154 |
| abstract_inverted_index.interest | 153 |
| abstract_inverted_index.learning | 1, 199 |
| abstract_inverted_index.limiting | 36 |
| abstract_inverted_index.robustly | 28 |
| abstract_inverted_index.training | 23, 136 |
| abstract_inverted_index.Moreover, | 118 |
| abstract_inverted_index.accuracy, | 131 |
| abstract_inverted_index.augmented | 122 |
| abstract_inverted_index.benchmark | 100 |
| abstract_inverted_index.complexes | 140 |
| abstract_inverted_index.discovery | 41 |
| abstract_inverted_index.enriching | 134 |
| abstract_inverted_index.evaluated | 29 |
| abstract_inverted_index.functions | 171 |
| abstract_inverted_index.highlight | 110 |
| abstract_inverted_index.including | 87 |
| abstract_inverted_index.leveraged | 126 |
| abstract_inverted_index.molecular | 201 |
| abstract_inverted_index.practical | 191 |
| abstract_inverted_index.projects. | 42 |
| abstract_inverted_index.promising | 4 |
| abstract_inverted_index.discovery, | 202 |
| abstract_inverted_index.generalise | 20 |
| abstract_inverted_index.predictive | 195 |
| abstract_inverted_index.simulation | 181 |
| abstract_inverted_index.strategies | 162 |
| abstract_inverted_index.Altogether, | 157 |
| abstract_inverted_index.Environment | 62 |
| abstract_inverted_index.Interaction | 67 |
| abstract_inverted_index.alternative | 99 |
| abstract_inverted_index.application | 38 |
| abstract_inverted_index.benchmarks, | 35, 86 |
| abstract_inverted_index.competitive | 111 |
| abstract_inverted_index.demonstrate | 120 |
| abstract_inverted_index.environment | 75 |
| abstract_inverted_index.performance | 112, 155, 175 |
| abstract_inverted_index.capabilities | 196 |
| abstract_inverted_index.interactions | 72 |
| abstract_inverted_index.perturbation | 106 |
| abstract_inverted_index.predictions. | 13 |
| abstract_inverted_index.applicability | 165 |
| abstract_inverted_index.calculations, | 108 |
| abstract_inverted_index.computational | 188 |
| abstract_inverted_index.methods—but | 182 |
| abstract_inverted_index.physics-based | 180 |
| abstract_inverted_index.computer-aided | 211 |
| abstract_inverted_index.protein-ligand | 71 |
| abstract_inverted_index.generalisation. | 79 |
| abstract_inverted_index.state-of-the-art | 174 |
| abstract_inverted_index.out-of-distribution | 90 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.84827911 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |