How to Realize a Graph on Random Points Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1804.08680
We are given an integer $d$, a graph $G=(V,E)$, and a uniformly random embedding $f : V \rightarrow \{0,1\}^d$ of the vertices. We are interested in the probability that $G$ can be "realized" by a scaled Euclidean norm on $\mathbb{R}^d$, in the sense that there exists a non-negative scaling $w \in \mathbb{R}^d$ and a real threshold $θ> 0$ so that \[ (u,v) \in E \qquad \text{if and only if} \qquad \Vert f(u) - f(v) \Vert_w^2 < θ\,, \] where $\| x \|_w^2 = \sum_i w_i x_i^2$. These constraints are similar to those found in the Euclidean minimum spanning tree (EMST) realization problem. A crucial difference is that the realization map is (partially) determined by the random variable $f$. In this paper, we consider embeddings $f : V \rightarrow \{ x, y\}^d$ for arbitrary $x, y \in \mathbb{R}$. We prove that arbitrary trees can be realized with high probability when $d = Ω(n \log n)$. We prove an analogous result for graphs parametrized by the arboricity: specifically, we show that an arbitrary graph $G$ with arboricity $a$ can be realized with high probability when $d = Ω(n a^2 \log n)$. Additionally, if $r$ is the minimum effective resistance of the edges, $G$ can be realized with high probability when $d=Ω\left((n/r^2)\log n\right)$. Next, we show that it is necessary to have $d \geq \binom{n}{2}/6$ to realize random graphs, or $d \geq n/2$ to realize random spanning trees of the complete graph. This is true even if we permit an arbitrary embedding $f : V \rightarrow \{ x, y\}^d$ for any $x, y \in \mathbb{R}$ or negative weights. Along the way, we prove a probabilistic analog of Radon's theorem for convex sets in $\{0,1\}^d$. Our tree-realization result can complement existing results on statistical inference for gene expression data which involves realizing a tree, such as [GJP15].
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1804.08680
- https://arxiv.org/pdf/1804.08680
- OA Status
- green
- References
- 3
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2798355620
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2798355620Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1804.08680Digital Object Identifier
- Title
-
How to Realize a Graph on Random PointsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-04-23Full publication date if available
- Authors
-
Saad Quader, Alexander RussellList of authors in order
- Landing page
-
https://arxiv.org/abs/1804.08680Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1804.08680Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1804.08680Direct OA link when available
- Concepts
-
Arboricity, Combinatorics, Omega, Embedding, Graph, Realization (probability), Mathematics, Random graph, Discrete mathematics, Euclidean geometry, Tree (set theory), Physics, Planar graph, Geometry, Computer science, Statistics, Artificial intelligence, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
3Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2798355620 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1804.08680 |
| ids.doi | https://doi.org/10.48550/arxiv.1804.08680 |
| ids.mag | 2798355620 |
| ids.openalex | https://openalex.org/W2798355620 |
| fwci | |
| type | preprint |
| title | How to Realize a Graph on Random Points |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10996 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1704 |
| topics[0].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[0].display_name | Computational Geometry and Mesh Generation |
| topics[1].id | https://openalex.org/T11152 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Stochastic processes and statistical mechanics |
| topics[2].id | https://openalex.org/T12292 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Graph Theory and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C83204008 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8059788942337036 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4784907 |
| concepts[0].display_name | Arboricity |
| concepts[1].id | https://openalex.org/C114614502 |
| concepts[1].level | 1 |
| concepts[1].score | 0.8021844625473022 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[1].display_name | Combinatorics |
| concepts[2].id | https://openalex.org/C2779557605 |
| concepts[2].level | 2 |
| concepts[2].score | 0.765864372253418 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9890 |
| concepts[2].display_name | Omega |
| concepts[3].id | https://openalex.org/C41608201 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5663874745368958 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[3].display_name | Embedding |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5460947751998901 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C2781089630 |
| concepts[5].level | 2 |
| concepts[5].score | 0.535880982875824 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21856745 |
| concepts[5].display_name | Realization (probability) |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5279105305671692 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C47458327 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5146383047103882 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q910404 |
| concepts[7].display_name | Random graph |
| concepts[8].id | https://openalex.org/C118615104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.443838894367218 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[8].display_name | Discrete mathematics |
| concepts[9].id | https://openalex.org/C129782007 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4388176202774048 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q162886 |
| concepts[9].display_name | Euclidean geometry |
| concepts[10].id | https://openalex.org/C113174947 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4290492534637451 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[10].display_name | Tree (set theory) |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.19029149413108826 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C101837359 |
| concepts[12].level | 3 |
| concepts[12].score | 0.12660855054855347 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q547823 |
| concepts[12].display_name | Planar graph |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0740196704864502 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07012119889259338 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.06328949332237244 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/arboricity |
| keywords[0].score | 0.8059788942337036 |
| keywords[0].display_name | Arboricity |
| keywords[1].id | https://openalex.org/keywords/combinatorics |
| keywords[1].score | 0.8021844625473022 |
| keywords[1].display_name | Combinatorics |
| keywords[2].id | https://openalex.org/keywords/omega |
| keywords[2].score | 0.765864372253418 |
| keywords[2].display_name | Omega |
| keywords[3].id | https://openalex.org/keywords/embedding |
| keywords[3].score | 0.5663874745368958 |
| keywords[3].display_name | Embedding |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.5460947751998901 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/realization |
| keywords[5].score | 0.535880982875824 |
| keywords[5].display_name | Realization (probability) |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.5279105305671692 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/random-graph |
| keywords[7].score | 0.5146383047103882 |
| keywords[7].display_name | Random graph |
| keywords[8].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[8].score | 0.443838894367218 |
| keywords[8].display_name | Discrete mathematics |
| keywords[9].id | https://openalex.org/keywords/euclidean-geometry |
| keywords[9].score | 0.4388176202774048 |
| keywords[9].display_name | Euclidean geometry |
| keywords[10].id | https://openalex.org/keywords/tree |
| keywords[10].score | 0.4290492534637451 |
| keywords[10].display_name | Tree (set theory) |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.19029149413108826 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/planar-graph |
| keywords[12].score | 0.12660855054855347 |
| keywords[12].display_name | Planar graph |
| keywords[13].id | https://openalex.org/keywords/geometry |
| keywords[13].score | 0.0740196704864502 |
| keywords[13].display_name | Geometry |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.07012119889259338 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.06328949332237244 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1804.08680 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1804.08680 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1804.08680 |
| locations[1].id | mag:2798355620 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1804.08680 |
| locations[2].id | doi:10.48550/arxiv.1804.08680 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1804.08680 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024321175 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Saad Quader |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Saad Quader |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5088846595 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8228-6238 |
| authorships[1].author.display_name | Alexander Russell |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Alexander Russell |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1804.08680 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | How to Realize a Graph on Random Points |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10996 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1704 |
| primary_topic.subfield.display_name | Computer Graphics and Computer-Aided Design |
| primary_topic.display_name | Computational Geometry and Mesh Generation |
| related_works | https://openalex.org/W155951998, https://openalex.org/W3185856802, https://openalex.org/W2963368420, https://openalex.org/W2042503074, https://openalex.org/W3208417137, https://openalex.org/W2963470556, https://openalex.org/W2299102011, https://openalex.org/W3018226465, https://openalex.org/W1514711175, https://openalex.org/W2024747753, https://openalex.org/W2083866643, https://openalex.org/W2247974119, https://openalex.org/W3157845808, https://openalex.org/W3159580594, https://openalex.org/W3161210952, https://openalex.org/W2953123155, https://openalex.org/W2588896144, https://openalex.org/W2133537273, https://openalex.org/W1968429800, https://openalex.org/W1960942702 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1804.08680 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1804.08680 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1804.08680 |
| primary_location.id | pmh:oai:arXiv.org:1804.08680 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1804.08680 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1804.08680 |
| publication_date | 2018-04-23 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2084809122, https://openalex.org/W172707356, https://openalex.org/W2168920762 |
| referenced_works_count | 3 |
| abstract_inverted_index.- | 72 |
| abstract_inverted_index.: | 15, 125, 250 |
| abstract_inverted_index.= | 82, 150, 184 |
| abstract_inverted_index.A | 102 |
| abstract_inverted_index.E | 63 |
| abstract_inverted_index.V | 16, 126, 251 |
| abstract_inverted_index.a | 6, 10, 34, 46, 53, 270, 298 |
| abstract_inverted_index.x | 80 |
| abstract_inverted_index.y | 134, 259 |
| abstract_inverted_index.$d | 149, 183, 219, 227 |
| abstract_inverted_index.$f | 14, 124, 249 |
| abstract_inverted_index.$w | 49 |
| abstract_inverted_index.0$ | 57 |
| abstract_inverted_index.In | 118 |
| abstract_inverted_index.We | 0, 22, 137, 154 |
| abstract_inverted_index.\[ | 60 |
| abstract_inverted_index.\] | 77 |
| abstract_inverted_index.\{ | 128, 253 |
| abstract_inverted_index.an | 3, 156, 169, 246 |
| abstract_inverted_index.as | 301 |
| abstract_inverted_index.be | 31, 143, 177, 202 |
| abstract_inverted_index.by | 33, 113, 162 |
| abstract_inverted_index.if | 190, 243 |
| abstract_inverted_index.in | 25, 40, 93, 279 |
| abstract_inverted_index.is | 105, 110, 192, 215, 240 |
| abstract_inverted_index.it | 214 |
| abstract_inverted_index.of | 19, 197, 235, 273 |
| abstract_inverted_index.on | 38, 288 |
| abstract_inverted_index.or | 226, 262 |
| abstract_inverted_index.so | 58 |
| abstract_inverted_index.to | 90, 217, 222, 230 |
| abstract_inverted_index.we | 121, 166, 211, 244, 268 |
| abstract_inverted_index.x, | 129, 254 |
| abstract_inverted_index.$G$ | 29, 172, 200 |
| abstract_inverted_index.$\| | 79 |
| abstract_inverted_index.$a$ | 175 |
| abstract_inverted_index.$r$ | 191 |
| abstract_inverted_index.$x, | 133, 258 |
| abstract_inverted_index.Our | 281 |
| abstract_inverted_index.\in | 50, 62, 135, 260 |
| abstract_inverted_index.a^2 | 186 |
| abstract_inverted_index.and | 9, 52, 66 |
| abstract_inverted_index.any | 257 |
| abstract_inverted_index.are | 1, 23, 88 |
| abstract_inverted_index.can | 30, 142, 176, 201, 284 |
| abstract_inverted_index.for | 131, 159, 256, 276, 291 |
| abstract_inverted_index.if} | 68 |
| abstract_inverted_index.map | 109 |
| abstract_inverted_index.the | 20, 26, 41, 94, 107, 114, 163, 193, 198, 236, 266 |
| abstract_inverted_index.w_i | 84 |
| abstract_inverted_index.$d$, | 5 |
| abstract_inverted_index.$f$. | 117 |
| abstract_inverted_index.< | 75 |
| abstract_inverted_index.This | 239 |
| abstract_inverted_index.\geq | 220, 228 |
| abstract_inverted_index.\log | 152, 187 |
| abstract_inverted_index.data | 294 |
| abstract_inverted_index.even | 242 |
| abstract_inverted_index.f(u) | 71 |
| abstract_inverted_index.f(v) | 73 |
| abstract_inverted_index.gene | 292 |
| abstract_inverted_index.have | 218 |
| abstract_inverted_index.high | 146, 180, 205 |
| abstract_inverted_index.n)$. | 153, 188 |
| abstract_inverted_index.n/2$ | 229 |
| abstract_inverted_index.norm | 37 |
| abstract_inverted_index.only | 67 |
| abstract_inverted_index.real | 54 |
| abstract_inverted_index.sets | 278 |
| abstract_inverted_index.show | 167, 212 |
| abstract_inverted_index.such | 300 |
| abstract_inverted_index.that | 28, 43, 59, 106, 139, 168, 213 |
| abstract_inverted_index.this | 119 |
| abstract_inverted_index.tree | 98 |
| abstract_inverted_index.true | 241 |
| abstract_inverted_index.way, | 267 |
| abstract_inverted_index.when | 148, 182, 207 |
| abstract_inverted_index.with | 145, 173, 179, 204 |
| abstract_inverted_index.Ω(n | 151, 185 |
| abstract_inverted_index.(u,v) | 61 |
| abstract_inverted_index.Along | 265 |
| abstract_inverted_index.Next, | 210 |
| abstract_inverted_index.These | 86 |
| abstract_inverted_index.\Vert | 70 |
| abstract_inverted_index.found | 92 |
| abstract_inverted_index.given | 2 |
| abstract_inverted_index.graph | 7, 171 |
| abstract_inverted_index.prove | 138, 155, 269 |
| abstract_inverted_index.sense | 42 |
| abstract_inverted_index.there | 44 |
| abstract_inverted_index.those | 91 |
| abstract_inverted_index.tree, | 299 |
| abstract_inverted_index.trees | 141, 234 |
| abstract_inverted_index.where | 78 |
| abstract_inverted_index.which | 295 |
| abstract_inverted_index.θ\,, | 76 |
| abstract_inverted_index.(EMST) | 99 |
| abstract_inverted_index.\qquad | 64, 69 |
| abstract_inverted_index.\sum_i | 83 |
| abstract_inverted_index.\|_w^2 | 81 |
| abstract_inverted_index.analog | 272 |
| abstract_inverted_index.convex | 277 |
| abstract_inverted_index.edges, | 199 |
| abstract_inverted_index.exists | 45 |
| abstract_inverted_index.graph. | 238 |
| abstract_inverted_index.graphs | 160 |
| abstract_inverted_index.paper, | 120 |
| abstract_inverted_index.permit | 245 |
| abstract_inverted_index.random | 12, 115, 224, 232 |
| abstract_inverted_index.result | 158, 283 |
| abstract_inverted_index.scaled | 35 |
| abstract_inverted_index.y\}^d$ | 130, 255 |
| abstract_inverted_index.$θ> | 56 |
| abstract_inverted_index.Radon's | 274 |
| abstract_inverted_index.crucial | 103 |
| abstract_inverted_index.graphs, | 225 |
| abstract_inverted_index.integer | 4 |
| abstract_inverted_index.minimum | 96, 194 |
| abstract_inverted_index.realize | 223, 231 |
| abstract_inverted_index.results | 287 |
| abstract_inverted_index.scaling | 48 |
| abstract_inverted_index.similar | 89 |
| abstract_inverted_index.theorem | 275 |
| abstract_inverted_index.x_i^2$. | 85 |
| abstract_inverted_index.[GJP15]. | 302 |
| abstract_inverted_index.\text{if | 65 |
| abstract_inverted_index.complete | 237 |
| abstract_inverted_index.consider | 122 |
| abstract_inverted_index.existing | 286 |
| abstract_inverted_index.involves | 296 |
| abstract_inverted_index.negative | 263 |
| abstract_inverted_index.problem. | 101 |
| abstract_inverted_index.realized | 144, 178, 203 |
| abstract_inverted_index.spanning | 97, 233 |
| abstract_inverted_index.variable | 116 |
| abstract_inverted_index.weights. | 264 |
| abstract_inverted_index.Euclidean | 36, 95 |
| abstract_inverted_index.\Vert_w^2 | 74 |
| abstract_inverted_index.analogous | 157 |
| abstract_inverted_index.arbitrary | 132, 140, 170, 247 |
| abstract_inverted_index.effective | 195 |
| abstract_inverted_index.embedding | 13, 248 |
| abstract_inverted_index.inference | 290 |
| abstract_inverted_index.necessary | 216 |
| abstract_inverted_index.realizing | 297 |
| abstract_inverted_index.threshold | 55 |
| abstract_inverted_index.uniformly | 11 |
| abstract_inverted_index.vertices. | 21 |
| abstract_inverted_index."realized" | 32 |
| abstract_inverted_index.$G=(V,E)$, | 8 |
| abstract_inverted_index.\{0,1\}^d$ | 18 |
| abstract_inverted_index.arboricity | 174 |
| abstract_inverted_index.complement | 285 |
| abstract_inverted_index.determined | 112 |
| abstract_inverted_index.difference | 104 |
| abstract_inverted_index.embeddings | 123 |
| abstract_inverted_index.expression | 293 |
| abstract_inverted_index.interested | 24 |
| abstract_inverted_index.n\right)$. | 209 |
| abstract_inverted_index.resistance | 196 |
| abstract_inverted_index.(partially) | 111 |
| abstract_inverted_index.\mathbb{R}$ | 261 |
| abstract_inverted_index.\rightarrow | 17, 127, 252 |
| abstract_inverted_index.arboricity: | 164 |
| abstract_inverted_index.constraints | 87 |
| abstract_inverted_index.probability | 27, 147, 181, 206 |
| abstract_inverted_index.realization | 100, 108 |
| abstract_inverted_index.statistical | 289 |
| abstract_inverted_index.$\{0,1\}^d$. | 280 |
| abstract_inverted_index.\mathbb{R}$. | 136 |
| abstract_inverted_index.non-negative | 47 |
| abstract_inverted_index.parametrized | 161 |
| abstract_inverted_index.Additionally, | 189 |
| abstract_inverted_index.\mathbb{R}^d$ | 51 |
| abstract_inverted_index.probabilistic | 271 |
| abstract_inverted_index.specifically, | 165 |
| abstract_inverted_index.$\mathbb{R}^d$, | 39 |
| abstract_inverted_index.\binom{n}{2}/6$ | 221 |
| abstract_inverted_index.tree-realization | 282 |
| abstract_inverted_index.$d=Ω\left((n/r^2)\log | 208 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |