HS-ResNet: Hierarchical-Split Block on Convolutional Neural Network Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2010.07621
This paper addresses representational block named Hierarchical-Split Block, which can be taken as a plug-and-play block to upgrade existing convolutional neural networks, improves model performance significantly in a network. Hierarchical-Split Block contains many hierarchical split and concatenate connections within one single residual block. We find multi-scale features is of great importance for numerous vision tasks. Moreover, Hierarchical-Split block is very flexible and efficient, which provides a large space of potential network architectures for different applications. In this work, we present a common backbone based on Hierarchical-Split block for tasks: image classification, object detection, instance segmentation and semantic image segmentation/parsing. Our approach shows significant improvements over all these core tasks in comparison with the baseline. As shown in Figure1, for image classification, our 50-layers network(HS-ResNet50) achieves 81.28% top-1 accuracy with competitive latency on ImageNet-1k dataset. It also outperforms most state-of-the-art models. The source code and models will be available on: https://github.com/PaddlePaddle/PaddleClas
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2010.07621
- https://arxiv.org/pdf/2010.07621
- OA Status
- green
- Cited By
- 35
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3093038272
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3093038272Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2010.07621Digital Object Identifier
- Title
-
HS-ResNet: Hierarchical-Split Block on Convolutional Neural NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-15Full publication date if available
- Authors
-
Pengcheng Yuan, Shufei Lin, Cheng Cui, Yuning Du, Ruoyu Guo, Dongliang He, Errui Ding, Shumin HanList of authors in order
- Landing page
-
https://arxiv.org/abs/2010.07621Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2010.07621Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2010.07621Direct OA link when available
- Concepts
-
Computer science, Block (permutation group theory), Artificial intelligence, Segmentation, Convolutional neural network, Pattern recognition (psychology), Parsing, Geometry, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
35Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 5, 2023: 13, 2022: 7, 2021: 9Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3093038272 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2010.07621 |
| ids.doi | https://doi.org/10.48550/arxiv.2010.07621 |
| ids.mag | 3093038272 |
| ids.openalex | https://openalex.org/W3093038272 |
| fwci | |
| type | preprint |
| title | HS-ResNet: Hierarchical-Split Block on Convolutional Neural Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8106088042259216 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777210771 |
| concepts[1].level | 2 |
| concepts[1].score | 0.742887020111084 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[1].display_name | Block (permutation group theory) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5754169821739197 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5702848434448242 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5626198649406433 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5403305888175964 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C186644900 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5315827131271362 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q194152 |
| concepts[6].display_name | Parsing |
| concepts[7].id | https://openalex.org/C2524010 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[7].display_name | Geometry |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8106088042259216 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/block |
| keywords[1].score | 0.742887020111084 |
| keywords[1].display_name | Block (permutation group theory) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5754169821739197 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.5702848434448242 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5626198649406433 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5403305888175964 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/parsing |
| keywords[6].score | 0.5315827131271362 |
| keywords[6].display_name | Parsing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2010.07621 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2010.07621 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2010.07621 |
| locations[1].id | doi:10.48550/arxiv.2010.07621 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2010.07621 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102703106 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pengcheng Yuan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[0].affiliations[0].raw_affiliation_string | Baidu#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I98301712 |
| authorships[0].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Baidu (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pengcheng Yuan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Baidu#TAB# |
| authorships[1].author.id | https://openalex.org/A5018499148 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4911-9443 |
| authorships[1].author.display_name | Shufei Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shufei Lin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102068162 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Cheng Cui |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cheng Cui |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010944460 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-4995-5472 |
| authorships[3].author.display_name | Yuning Du |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuning Du |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5083640035 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-0335-4259 |
| authorships[4].author.display_name | Ruoyu Guo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ruoyu Guo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5018276259 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1129-8610 |
| authorships[5].author.display_name | Dongliang He |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dongliang He |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5050031109 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1867-5378 |
| authorships[6].author.display_name | Errui Ding |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Errui Ding |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5016062734 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5602-9863 |
| authorships[7].author.display_name | Shumin Han |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Shumin Han |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2010.07621 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HS-ResNet: Hierarchical-Split Block on Convolutional Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4293226380, https://openalex.org/W579810227, https://openalex.org/W2952780262, https://openalex.org/W2979495269, https://openalex.org/W2392917763, https://openalex.org/W2083429127, https://openalex.org/W2358855848, https://openalex.org/W2142145894, https://openalex.org/W2033808215, https://openalex.org/W2359307945 |
| cited_by_count | 35 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 9 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2010.07621 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2010.07621 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2010.07621 |
| primary_location.id | pmh:oai:arXiv.org:2010.07621 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2010.07621 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2010.07621 |
| publication_date | 2020-10-15 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3098389804, https://openalex.org/W2994749257, https://openalex.org/W2967733054, https://openalex.org/W2990211757, https://openalex.org/W2565639579, https://openalex.org/W2998508940, https://openalex.org/W2560023338, https://openalex.org/W2560622558, https://openalex.org/W1665214252, https://openalex.org/W2962858109, https://openalex.org/W1686810756, https://openalex.org/W2963420686, https://openalex.org/W2630837129, https://openalex.org/W1861492603, https://openalex.org/W2097117768, https://openalex.org/W2982083293, https://openalex.org/W3016719260, https://openalex.org/W2953106684, https://openalex.org/W2108598243, https://openalex.org/W2963163009, https://openalex.org/W2412782625, https://openalex.org/W2549139847, https://openalex.org/W2996844762, https://openalex.org/W3035414587, https://openalex.org/W2992308087, https://openalex.org/W2340897893, https://openalex.org/W2742165450, https://openalex.org/W3036289652, https://openalex.org/W2951104886, https://openalex.org/W2946948417, https://openalex.org/W3034528892, https://openalex.org/W2194775991, https://openalex.org/W2156303437, https://openalex.org/W2765407302, https://openalex.org/W2922509574, https://openalex.org/W2963150697, https://openalex.org/W2963855133, https://openalex.org/W2949117887, https://openalex.org/W3102631365, https://openalex.org/W2183341477, https://openalex.org/W2963037463 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 13, 27, 65, 80 |
| abstract_inverted_index.As | 114 |
| abstract_inverted_index.In | 75 |
| abstract_inverted_index.It | 134 |
| abstract_inverted_index.We | 43 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.be | 10, 146 |
| abstract_inverted_index.in | 26, 109, 116 |
| abstract_inverted_index.is | 47, 58 |
| abstract_inverted_index.of | 48, 68 |
| abstract_inverted_index.on | 84, 131 |
| abstract_inverted_index.to | 16 |
| abstract_inverted_index.we | 78 |
| abstract_inverted_index.Our | 99 |
| abstract_inverted_index.The | 140 |
| abstract_inverted_index.all | 105 |
| abstract_inverted_index.and | 35, 61, 95, 143 |
| abstract_inverted_index.can | 9 |
| abstract_inverted_index.for | 51, 72, 87, 118 |
| abstract_inverted_index.on: | 148 |
| abstract_inverted_index.one | 39 |
| abstract_inverted_index.our | 121 |
| abstract_inverted_index.the | 112 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 135 |
| abstract_inverted_index.code | 142 |
| abstract_inverted_index.core | 107 |
| abstract_inverted_index.find | 44 |
| abstract_inverted_index.many | 32 |
| abstract_inverted_index.most | 137 |
| abstract_inverted_index.over | 104 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.very | 59 |
| abstract_inverted_index.will | 145 |
| abstract_inverted_index.with | 111, 128 |
| abstract_inverted_index.Block | 30 |
| abstract_inverted_index.based | 83 |
| abstract_inverted_index.block | 4, 15, 57, 86 |
| abstract_inverted_index.great | 49 |
| abstract_inverted_index.image | 89, 97, 119 |
| abstract_inverted_index.large | 66 |
| abstract_inverted_index.model | 23 |
| abstract_inverted_index.named | 5 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.shown | 115 |
| abstract_inverted_index.shows | 101 |
| abstract_inverted_index.space | 67 |
| abstract_inverted_index.split | 34 |
| abstract_inverted_index.taken | 11 |
| abstract_inverted_index.tasks | 108 |
| abstract_inverted_index.these | 106 |
| abstract_inverted_index.top-1 | 126 |
| abstract_inverted_index.which | 8, 63 |
| abstract_inverted_index.work, | 77 |
| abstract_inverted_index.81.28% | 125 |
| abstract_inverted_index.Block, | 7 |
| abstract_inverted_index.block. | 42 |
| abstract_inverted_index.common | 81 |
| abstract_inverted_index.models | 144 |
| abstract_inverted_index.neural | 20 |
| abstract_inverted_index.object | 91 |
| abstract_inverted_index.single | 40 |
| abstract_inverted_index.source | 141 |
| abstract_inverted_index.tasks. | 54 |
| abstract_inverted_index.tasks: | 88 |
| abstract_inverted_index.vision | 53 |
| abstract_inverted_index.within | 38 |
| abstract_inverted_index.latency | 130 |
| abstract_inverted_index.models. | 139 |
| abstract_inverted_index.network | 70 |
| abstract_inverted_index.present | 79 |
| abstract_inverted_index.upgrade | 17 |
| abstract_inverted_index.Figure1, | 117 |
| abstract_inverted_index.accuracy | 127 |
| abstract_inverted_index.achieves | 124 |
| abstract_inverted_index.approach | 100 |
| abstract_inverted_index.backbone | 82 |
| abstract_inverted_index.contains | 31 |
| abstract_inverted_index.dataset. | 133 |
| abstract_inverted_index.existing | 18 |
| abstract_inverted_index.features | 46 |
| abstract_inverted_index.flexible | 60 |
| abstract_inverted_index.improves | 22 |
| abstract_inverted_index.instance | 93 |
| abstract_inverted_index.network. | 28 |
| abstract_inverted_index.numerous | 52 |
| abstract_inverted_index.provides | 64 |
| abstract_inverted_index.residual | 41 |
| abstract_inverted_index.semantic | 96 |
| abstract_inverted_index.50-layers | 122 |
| abstract_inverted_index.Moreover, | 55 |
| abstract_inverted_index.addresses | 2 |
| abstract_inverted_index.available | 147 |
| abstract_inverted_index.baseline. | 113 |
| abstract_inverted_index.different | 73 |
| abstract_inverted_index.networks, | 21 |
| abstract_inverted_index.potential | 69 |
| abstract_inverted_index.comparison | 110 |
| abstract_inverted_index.detection, | 92 |
| abstract_inverted_index.efficient, | 62 |
| abstract_inverted_index.importance | 50 |
| abstract_inverted_index.ImageNet-1k | 132 |
| abstract_inverted_index.competitive | 129 |
| abstract_inverted_index.concatenate | 36 |
| abstract_inverted_index.connections | 37 |
| abstract_inverted_index.multi-scale | 45 |
| abstract_inverted_index.outperforms | 136 |
| abstract_inverted_index.performance | 24 |
| abstract_inverted_index.significant | 102 |
| abstract_inverted_index.hierarchical | 33 |
| abstract_inverted_index.improvements | 103 |
| abstract_inverted_index.segmentation | 94 |
| abstract_inverted_index.applications. | 74 |
| abstract_inverted_index.architectures | 71 |
| abstract_inverted_index.convolutional | 19 |
| abstract_inverted_index.plug-and-play | 14 |
| abstract_inverted_index.significantly | 25 |
| abstract_inverted_index.classification, | 90, 120 |
| abstract_inverted_index.representational | 3 |
| abstract_inverted_index.state-of-the-art | 138 |
| abstract_inverted_index.Hierarchical-Split | 6, 29, 56, 85 |
| abstract_inverted_index.network(HS-ResNet50) | 123 |
| abstract_inverted_index.segmentation/parsing. | 98 |
| abstract_inverted_index.https://github.com/PaddlePaddle/PaddleClas | 149 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |