HSAN: A Side Adapter Network with Hybrid Compression and Local Enhancement Attention Article Swipe
Significant progress has been made in open-vocabulary semantic segmentation tasks, particularly in recognizing and segmenting unseen categories by leveraging Contrastive Language-Image Pre-training CLIP . Among existing methods, the Side Adapter Network SAN stands out as an effective approach, achieving strong performance. However, we identify that SAN does not perform well in capturing fine-grained local features in complex scenes and high-resolution images. Additionally, it suffers from high computational costs and struggles to effectively fuse the features generated by its internal modules with those extracted by CLIP, resulting in segmentation accuracy. To address these issues, we propose HSAN, which introduces the Hybrid Compression and Local Enhancement Attention HCLEA mechanism to re-duce dimensionality for lower computational complexity while using additional convolutional neural networks to preserve and enhance local features. Furthermore, we design an Adaptive Feature Fusion Block AFFB that dynamically adjusts fusion weights based on input features, achieving better global-local feature fusion and fully leveraging CLIP’s generalization ability. Extensive experiments on benchmark datasets demonstrate that HSAN achieves higher accuracy and faster inference compared to SAN and other state-of-the-art methods.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.65286/icic.v21i3.45458
- http://poster-openaccess.com/files/ICIC2025/2910.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4416058202
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416058202Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.65286/icic.v21i3.45458Digital Object Identifier
- Title
-
HSAN: A Side Adapter Network with Hybrid Compression and Local Enhancement AttentionWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yuguang FuList of authors in order
- Landing page
-
https://doi.org/10.65286/icic.v21i3.45458Publisher landing page
- PDF URL
-
https://poster-openaccess.com/files/ICIC2025/2910.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://poster-openaccess.com/files/ICIC2025/2910.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416058202 |
|---|---|
| doi | https://doi.org/10.65286/icic.v21i3.45458 |
| ids.doi | https://doi.org/10.65286/icic.v21i3.45458 |
| ids.openalex | https://openalex.org/W4416058202 |
| fwci | |
| type | article |
| title | HSAN: A Side Adapter Network with Hybrid Compression and Local Enhancement Attention |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 3058 |
| biblio.first_page | 3044 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.65286/icic.v21i3.45458 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | http://poster-openaccess.com/files/ICIC2025/2910.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Poster Volume Ⅲ The 2025 Twenty-First International Conference on Intelligent Computing July 26-29, 2025 Ningbo, China |
| locations[0].landing_page_url | https://doi.org/10.65286/icic.v21i3.45458 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5002684705 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7125-0961 |
| authorships[0].author.display_name | Yuguang Fu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yankui Fu |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://poster-openaccess.com/files/ICIC2025/2910.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-10T00:00:00 |
| display_name | HSAN: A Side Adapter Network with Hybrid Compression and Local Enhancement Attention |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:36:09.266747 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.65286/icic.v21i3.45458 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://poster-openaccess.com/files/ICIC2025/2910.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Poster Volume Ⅲ The 2025 Twenty-First International Conference on Intelligent Computing July 26-29, 2025 Ningbo, China |
| best_oa_location.landing_page_url | https://doi.org/10.65286/icic.v21i3.45458 |
| primary_location.id | doi:10.65286/icic.v21i3.45458 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | http://poster-openaccess.com/files/ICIC2025/2910.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Poster Volume Ⅲ The 2025 Twenty-First International Conference on Intelligent Computing July 26-29, 2025 Ningbo, China |
| primary_location.landing_page_url | https://doi.org/10.65286/icic.v21i3.45458 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.. | 23 |
| abstract_inverted_index.To | 89 |
| abstract_inverted_index.an | 35, 129 |
| abstract_inverted_index.as | 34 |
| abstract_inverted_index.by | 17, 76, 83 |
| abstract_inverted_index.in | 5, 11, 50, 55, 86 |
| abstract_inverted_index.it | 62 |
| abstract_inverted_index.on | 141, 157 |
| abstract_inverted_index.to | 70, 107, 120, 170 |
| abstract_inverted_index.we | 42, 93, 127 |
| abstract_inverted_index.SAN | 31, 45, 171 |
| abstract_inverted_index.and | 13, 58, 68, 101, 122, 149, 166, 172 |
| abstract_inverted_index.for | 110 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.its | 77 |
| abstract_inverted_index.not | 47 |
| abstract_inverted_index.out | 33 |
| abstract_inverted_index.the | 27, 73, 98 |
| abstract_inverted_index.AFFB | 134 |
| abstract_inverted_index.CLIP | 22 |
| abstract_inverted_index.HSAN | 162 |
| abstract_inverted_index.Side | 28 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.does | 46 |
| abstract_inverted_index.from | 64 |
| abstract_inverted_index.fuse | 72 |
| abstract_inverted_index.high | 65 |
| abstract_inverted_index.made | 4 |
| abstract_inverted_index.that | 44, 135, 161 |
| abstract_inverted_index.well | 49 |
| abstract_inverted_index.with | 80 |
| abstract_inverted_index.Among | 24 |
| abstract_inverted_index.Block | 133 |
| abstract_inverted_index.CLIP, | 84 |
| abstract_inverted_index.HCLEA | 105 |
| abstract_inverted_index.HSAN, | 95 |
| abstract_inverted_index.Local | 102 |
| abstract_inverted_index.based | 140 |
| abstract_inverted_index.costs | 67 |
| abstract_inverted_index.fully | 150 |
| abstract_inverted_index.input | 142 |
| abstract_inverted_index.local | 53, 124 |
| abstract_inverted_index.lower | 111 |
| abstract_inverted_index.other | 173 |
| abstract_inverted_index.these | 91 |
| abstract_inverted_index.those | 81 |
| abstract_inverted_index.using | 115 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.while | 114 |
| abstract_inverted_index.Fusion | 132 |
| abstract_inverted_index.Hybrid | 99 |
| abstract_inverted_index.better | 145 |
| abstract_inverted_index.design | 128 |
| abstract_inverted_index.faster | 167 |
| abstract_inverted_index.fusion | 138, 148 |
| abstract_inverted_index.higher | 164 |
| abstract_inverted_index.neural | 118 |
| abstract_inverted_index.scenes | 57 |
| abstract_inverted_index.stands | 32 |
| abstract_inverted_index.strong | 39 |
| abstract_inverted_index.tasks, | 9 |
| abstract_inverted_index.unseen | 15 |
| abstract_inverted_index.Adapter | 29 |
| abstract_inverted_index.Feature | 131 |
| abstract_inverted_index.Network | 30 |
| abstract_inverted_index.address | 90 |
| abstract_inverted_index.adjusts | 137 |
| abstract_inverted_index.complex | 56 |
| abstract_inverted_index.enhance | 123 |
| abstract_inverted_index.feature | 147 |
| abstract_inverted_index.images. | 60 |
| abstract_inverted_index.issues, | 92 |
| abstract_inverted_index.modules | 79 |
| abstract_inverted_index.perform | 48 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.re-duce | 108 |
| abstract_inverted_index.suffers | 63 |
| abstract_inverted_index.weights | 139 |
| abstract_inverted_index.Adaptive | 130 |
| abstract_inverted_index.CLIP’s | 152 |
| abstract_inverted_index.However, | 41 |
| abstract_inverted_index.ability. | 154 |
| abstract_inverted_index.accuracy | 165 |
| abstract_inverted_index.achieves | 163 |
| abstract_inverted_index.compared | 169 |
| abstract_inverted_index.datasets | 159 |
| abstract_inverted_index.existing | 25 |
| abstract_inverted_index.features | 54, 74 |
| abstract_inverted_index.identify | 43 |
| abstract_inverted_index.internal | 78 |
| abstract_inverted_index.methods, | 26 |
| abstract_inverted_index.methods. | 175 |
| abstract_inverted_index.networks | 119 |
| abstract_inverted_index.preserve | 121 |
| abstract_inverted_index.progress | 1 |
| abstract_inverted_index.semantic | 7 |
| abstract_inverted_index.Attention | 104 |
| abstract_inverted_index.Extensive | 155 |
| abstract_inverted_index.accuracy. | 88 |
| abstract_inverted_index.achieving | 38, 144 |
| abstract_inverted_index.approach, | 37 |
| abstract_inverted_index.benchmark | 158 |
| abstract_inverted_index.capturing | 51 |
| abstract_inverted_index.effective | 36 |
| abstract_inverted_index.extracted | 82 |
| abstract_inverted_index.features, | 143 |
| abstract_inverted_index.features. | 125 |
| abstract_inverted_index.generated | 75 |
| abstract_inverted_index.inference | 168 |
| abstract_inverted_index.mechanism | 106 |
| abstract_inverted_index.resulting | 85 |
| abstract_inverted_index.struggles | 69 |
| abstract_inverted_index.additional | 116 |
| abstract_inverted_index.categories | 16 |
| abstract_inverted_index.complexity | 113 |
| abstract_inverted_index.introduces | 97 |
| abstract_inverted_index.leveraging | 18, 151 |
| abstract_inverted_index.segmenting | 14 |
| abstract_inverted_index.Compression | 100 |
| abstract_inverted_index.Contrastive | 19 |
| abstract_inverted_index.Enhancement | 103 |
| abstract_inverted_index.Significant | 0 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.dynamically | 136 |
| abstract_inverted_index.effectively | 71 |
| abstract_inverted_index.experiments | 156 |
| abstract_inverted_index.recognizing | 12 |
| abstract_inverted_index.Furthermore, | 126 |
| abstract_inverted_index.Pre-training | 21 |
| abstract_inverted_index.fine-grained | 52 |
| abstract_inverted_index.global-local | 146 |
| abstract_inverted_index.particularly | 10 |
| abstract_inverted_index.performance. | 40 |
| abstract_inverted_index.segmentation | 8, 87 |
| abstract_inverted_index.Additionally, | 61 |
| abstract_inverted_index.computational | 66, 112 |
| abstract_inverted_index.convolutional | 117 |
| abstract_inverted_index.Language-Image | 20 |
| abstract_inverted_index.dimensionality | 109 |
| abstract_inverted_index.generalization | 153 |
| abstract_inverted_index.high-resolution | 59 |
| abstract_inverted_index.open-vocabulary | 6 |
| abstract_inverted_index.state-of-the-art | 174 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5002684705 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |