HumanCoser: Layered 3D Human Generation via Semantic-Aware Diffusion Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.11357
This paper aims to generate physically-layered 3D humans from text prompts. Existing methods either generate 3D clothed humans as a whole or support only tight and simple clothing generation, which limits their applications to virtual try-on and part-level editing. To achieve physically-layered 3D human generation with reusable and complex clothing, we propose a novel layer-wise dressed human representation based on a physically-decoupled diffusion model. Specifically, to achieve layer-wise clothing generation, we propose a dual-representation decoupling framework for generating clothing decoupled from the human body, in conjunction with an innovative multi-layer fusion volume rendering method. To match the clothing with different body shapes, we propose an SMPL-driven implicit field deformation network that enables the free transfer and reuse of clothing. Extensive experiments demonstrate that our approach not only achieves state-of-the-art layered 3D human generation with complex clothing but also supports virtual try-on and layered human animation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.11357
- https://arxiv.org/pdf/2408.11357
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403012223
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403012223Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.11357Digital Object Identifier
- Title
-
HumanCoser: Layered 3D Human Generation via Semantic-Aware Diffusion ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-21Full publication date if available
- Authors
-
Yi Wang, Jian Ma, Ruizhi Shao, Feng Qiao, Yu‐Kun Lai, Kun LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.11357Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.11357Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.11357Direct OA link when available
- Concepts
-
Computer science, Diffusion, Natural language processing, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403012223 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.11357 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.11357 |
| ids.openalex | https://openalex.org/W4403012223 |
| fwci | 0.0 |
| type | preprint |
| title | HumanCoser: Layered 3D Human Generation via Semantic-Aware Diffusion Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12290 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9927999973297119 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Human Motion and Animation |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9905999898910522 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T10719 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9679999947547913 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | 3D Shape Modeling and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5494505763053894 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C69357855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5449676513671875 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[1].display_name | Diffusion |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.34881800413131714 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C121332964 |
| concepts[3].level | 0 |
| concepts[3].score | 0.08956170082092285 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[3].display_name | Physics |
| concepts[4].id | https://openalex.org/C97355855 |
| concepts[4].level | 1 |
| concepts[4].score | 0.054889291524887085 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[4].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5494505763053894 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/diffusion |
| keywords[1].score | 0.5449676513671875 |
| keywords[1].display_name | Diffusion |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.34881800413131714 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/physics |
| keywords[3].score | 0.08956170082092285 |
| keywords[3].display_name | Physics |
| keywords[4].id | https://openalex.org/keywords/thermodynamics |
| keywords[4].score | 0.054889291524887085 |
| keywords[4].display_name | Thermodynamics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.11357 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.11357 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.11357 |
| locations[1].id | doi:10.48550/arxiv.2408.11357 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.11357 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103488047 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4985-2998 |
| authorships[0].author.display_name | Yi Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Yi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053122805 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2644-5756 |
| authorships[1].author.display_name | Jian Ma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ma, Jian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078824028 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2188-1348 |
| authorships[2].author.display_name | Ruizhi Shao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shao, Ruizhi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100611796 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4333-5401 |
| authorships[3].author.display_name | Feng Qiao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Feng, Qiao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067850699 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2094-5680 |
| authorships[4].author.display_name | Yu‐Kun Lai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lai, Yu-kun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100377498 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5083-2145 |
| authorships[5].author.display_name | Kun Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Kun |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.11357 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HumanCoser: Layered 3D Human Generation via Semantic-Aware Diffusion Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12290 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9927999973297119 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Human Motion and Animation |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.11357 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.11357 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.11357 |
| primary_location.id | pmh:oai:arXiv.org:2408.11357 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.11357 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.11357 |
| publication_date | 2024-08-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 52, 60, 72 |
| abstract_inverted_index.3D | 6, 15, 42, 130 |
| abstract_inverted_index.To | 39, 94 |
| abstract_inverted_index.an | 87, 104 |
| abstract_inverted_index.as | 18 |
| abstract_inverted_index.in | 84 |
| abstract_inverted_index.of | 117 |
| abstract_inverted_index.on | 59 |
| abstract_inverted_index.or | 21 |
| abstract_inverted_index.to | 3, 33, 65 |
| abstract_inverted_index.we | 50, 70, 102 |
| abstract_inverted_index.and | 25, 36, 47, 115, 141 |
| abstract_inverted_index.but | 136 |
| abstract_inverted_index.for | 76 |
| abstract_inverted_index.not | 125 |
| abstract_inverted_index.our | 123 |
| abstract_inverted_index.the | 81, 96, 112 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.also | 137 |
| abstract_inverted_index.body | 100 |
| abstract_inverted_index.free | 113 |
| abstract_inverted_index.from | 8, 80 |
| abstract_inverted_index.only | 23, 126 |
| abstract_inverted_index.text | 9 |
| abstract_inverted_index.that | 110, 122 |
| abstract_inverted_index.with | 45, 86, 98, 133 |
| abstract_inverted_index.based | 58 |
| abstract_inverted_index.body, | 83 |
| abstract_inverted_index.field | 107 |
| abstract_inverted_index.human | 43, 56, 82, 131, 143 |
| abstract_inverted_index.match | 95 |
| abstract_inverted_index.novel | 53 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.reuse | 116 |
| abstract_inverted_index.their | 31 |
| abstract_inverted_index.tight | 24 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.whole | 20 |
| abstract_inverted_index.either | 13 |
| abstract_inverted_index.fusion | 90 |
| abstract_inverted_index.humans | 7, 17 |
| abstract_inverted_index.limits | 30 |
| abstract_inverted_index.model. | 63 |
| abstract_inverted_index.simple | 26 |
| abstract_inverted_index.try-on | 35, 140 |
| abstract_inverted_index.volume | 91 |
| abstract_inverted_index.achieve | 40, 66 |
| abstract_inverted_index.clothed | 16 |
| abstract_inverted_index.complex | 48, 134 |
| abstract_inverted_index.dressed | 55 |
| abstract_inverted_index.enables | 111 |
| abstract_inverted_index.layered | 129, 142 |
| abstract_inverted_index.method. | 93 |
| abstract_inverted_index.methods | 12 |
| abstract_inverted_index.network | 109 |
| abstract_inverted_index.propose | 51, 71, 103 |
| abstract_inverted_index.shapes, | 101 |
| abstract_inverted_index.support | 22 |
| abstract_inverted_index.virtual | 34, 139 |
| abstract_inverted_index.Existing | 11 |
| abstract_inverted_index.achieves | 127 |
| abstract_inverted_index.approach | 124 |
| abstract_inverted_index.clothing | 27, 68, 78, 97, 135 |
| abstract_inverted_index.editing. | 38 |
| abstract_inverted_index.generate | 4, 14 |
| abstract_inverted_index.implicit | 106 |
| abstract_inverted_index.prompts. | 10 |
| abstract_inverted_index.reusable | 46 |
| abstract_inverted_index.supports | 138 |
| abstract_inverted_index.transfer | 114 |
| abstract_inverted_index.Extensive | 119 |
| abstract_inverted_index.clothing, | 49 |
| abstract_inverted_index.clothing. | 118 |
| abstract_inverted_index.decoupled | 79 |
| abstract_inverted_index.different | 99 |
| abstract_inverted_index.diffusion | 62 |
| abstract_inverted_index.framework | 75 |
| abstract_inverted_index.rendering | 92 |
| abstract_inverted_index.animation. | 144 |
| abstract_inverted_index.decoupling | 74 |
| abstract_inverted_index.generating | 77 |
| abstract_inverted_index.generation | 44, 132 |
| abstract_inverted_index.innovative | 88 |
| abstract_inverted_index.layer-wise | 54, 67 |
| abstract_inverted_index.part-level | 37 |
| abstract_inverted_index.SMPL-driven | 105 |
| abstract_inverted_index.conjunction | 85 |
| abstract_inverted_index.deformation | 108 |
| abstract_inverted_index.demonstrate | 121 |
| abstract_inverted_index.experiments | 120 |
| abstract_inverted_index.generation, | 28, 69 |
| abstract_inverted_index.multi-layer | 89 |
| abstract_inverted_index.applications | 32 |
| abstract_inverted_index.Specifically, | 64 |
| abstract_inverted_index.representation | 57 |
| abstract_inverted_index.state-of-the-art | 128 |
| abstract_inverted_index.physically-layered | 5, 41 |
| abstract_inverted_index.dual-representation | 73 |
| abstract_inverted_index.physically-decoupled | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |