HUMANE: Harmonious Understanding of Machine Learning Analytics Network—global consensus for research on artificial intelligence in medicine Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.37349/edht.2024.00018
Aim: AI research, development, and implementation are expanding at an exponential pace across healthcare. This paradigm shift in healthcare research has led to increased demands for clinical outcomes, all at the expense of a significant gap in AI literacy within the healthcare field. This has further translated to a lack of tools in creating a framework for literature in the AI in medicine domain. We propose HUMANE (Harmonious Understanding of Machine Learning Analytics Network), a checklist for establishing an international consensus for authors and reviewers involved in research focused on artificial intelligence (AI) or machine learning (ML) in medicine. Methods: This study was conducted using the Delphi method by devising a survey using the Google Forms platform. The survey was developed as a checklist containing 8 sections and 56 questions with a 5-point Likert scale. Results: A total of 33 survey respondents were part of the initial Delphi process with the majority (45%) in the 36–45 years age group. The respondents were located across the USA (61%), UK (24%), and Australia (9%) as the top 3 countries, with a pre-dominant healthcare background (42%) as early-career professionals (3–10 years’ experience) (42%). Feedback showed an overall agreeable consensus (mean ranges 4.1–4.8, out of 5) as cumulative scores throughout all sections. The majority of the consensus was agreeable with the Discussion (Other) section of the checklist (median 4.8 (interquartile range (IQR) 4.8-4.8)), whereas the least agreed section was the Ground Truth (Expert(s) review) section (median 4.1 (IQR 3.9–4.2)) and the Methods (Outcomes) section (median 4.1 (IQR 4.1–4.1)) of the checklist. The final checklist after consensus and revision included a total of 8 sections and 50 questions. Conclusions: The HUMANE international consensus has reflected on further research on the potential of this checklist as an established consensus in improving the reliability and quality of research in this field.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.37349/edht.2024.00018
- OA Status
- diamond
- Cited By
- 1
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400219558
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400219558Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.37349/edht.2024.00018Digital Object Identifier
- Title
-
HUMANE: Harmonious Understanding of Machine Learning Analytics Network—global consensus for research on artificial intelligence in medicineWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-30Full publication date if available
- Authors
-
Neha Deo, Faisal A. Nawaz, Clea du Toit, Tran Tran, Chaitanya Mamillapalli, Piyush Mathur, Sandeep Reddy, Shyam Visweswaran, T. N. Prabhu, Khalid Moidu, Sandosh Padmanabhan, Rahul KashyapList of authors in order
- Landing page
-
https://doi.org/10.37349/edht.2024.00018Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.37349/edht.2024.00018Direct OA link when available
- Concepts
-
Analytics, Artificial intelligence, Data science, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400219558 |
|---|---|
| doi | https://doi.org/10.37349/edht.2024.00018 |
| ids.doi | https://doi.org/10.37349/edht.2024.00018 |
| ids.openalex | https://openalex.org/W4400219558 |
| fwci | 0.24339971 |
| type | article |
| title | HUMANE: Harmonious Understanding of Machine Learning Analytics Network—global consensus for research on artificial intelligence in medicine |
| biblio.issue | 3 |
| biblio.volume | 2 |
| biblio.last_page | 166 |
| biblio.first_page | 157 |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9865999817848206 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9812999963760376 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79158427 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5383734107017517 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[0].display_name | Analytics |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5031396746635437 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.44881290197372437 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3915272653102875 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/analytics |
| keywords[0].score | 0.5383734107017517 |
| keywords[0].display_name | Analytics |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5031396746635437 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.44881290197372437 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3915272653102875 |
| keywords[3].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.37349/edht.2024.00018 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407042611 |
| locations[0].source.issn | 2996-9409 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2996-9409 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Exploration of Digital Health Technologies |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Exploration of Digital Health Technologies |
| locations[0].landing_page_url | https://doi.org/10.37349/edht.2024.00018 |
| locations[1].id | pmh:oai:eprints.gla.ac.uk:330638 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400411 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Enlighten: Publications (The University of Glasgow) |
| locations[1].source.host_organization | https://openalex.org/I7882870 |
| locations[1].source.host_organization_name | University of Glasgow |
| locations[1].source.host_organization_lineage | https://openalex.org/I7882870 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Articles |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:doaj.org/article:6aaf2ed019784268a85e3ebac223f125 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Exploration of Digital Health Technologies, Vol 2, Iss 3, Pp 157-166 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/6aaf2ed019784268a85e3ebac223f125 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072868541 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0583-8916 |
| authorships[0].author.display_name | Neha Deo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210087915 |
| authorships[0].affiliations[0].raw_affiliation_string | Massachusetts General Hospital, Boston, MA 02114, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210087915 |
| authorships[0].institutions[0].ror | https://ror.org/002pd6e78 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Massachusetts General Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Neha Deo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Massachusetts General Hospital, Boston, MA 02114, USA |
| authorships[1].author.id | https://openalex.org/A5036342595 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0701-7628 |
| authorships[1].author.display_name | Faisal A. Nawaz |
| authorships[1].countries | AE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210099383 |
| authorships[1].affiliations[0].raw_affiliation_string | Al Amal Psychiatric Hospital, Emirates Health Services, Dubai 2299, United Arab Emirates |
| authorships[1].institutions[0].id | https://openalex.org/I4210099383 |
| authorships[1].institutions[0].ror | https://ror.org/016bjqk65 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801466683, https://openalex.org/I4210087867, https://openalex.org/I4210091532, https://openalex.org/I4210099383, https://openalex.org/I4210121446 |
| authorships[1].institutions[0].country_code | AE |
| authorships[1].institutions[0].display_name | Abu Dhabi Health Services |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Faisal A. Nawaz |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Al Amal Psychiatric Hospital, Emirates Health Services, Dubai 2299, United Arab Emirates |
| authorships[2].author.id | https://openalex.org/A5061059266 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7221-6965 |
| authorships[2].author.display_name | Clea du Toit |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I7882870 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA Glasgow, UK |
| authorships[2].institutions[0].id | https://openalex.org/I7882870 |
| authorships[2].institutions[0].ror | https://ror.org/00vtgdb53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I7882870 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Glasgow |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Clea du Toit |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA Glasgow, UK |
| authorships[3].author.id | https://openalex.org/A5102922466 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6829-6432 |
| authorships[3].author.display_name | Tran Tran |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I7882870 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA Glasgow, UK |
| authorships[3].institutions[0].id | https://openalex.org/I7882870 |
| authorships[3].institutions[0].ror | https://ror.org/00vtgdb53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I7882870 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Glasgow |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tran Tran |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA Glasgow, UK |
| authorships[4].author.id | https://openalex.org/A5054909444 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3999-1414 |
| authorships[4].author.display_name | Chaitanya Mamillapalli |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210153886 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Endocrinology, Springfield Clinic, Springfield, IL 62702-5104, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4210153886 |
| authorships[4].institutions[0].ror | https://ror.org/04qd1fg21 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210153886 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Springfield Clinic |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chaitanya Mamillapalli |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Endocrinology, Springfield Clinic, Springfield, IL 62702-5104, USA |
| authorships[5].author.id | https://openalex.org/A5050110511 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3777-8767 |
| authorships[5].author.display_name | Piyush Mathur |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1316902750 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Anesthesiology, Cleveland Clinic, Cleveland, OH 44195, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1316902750 |
| authorships[5].institutions[0].ror | https://ror.org/03xjacd83 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I1316902750 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Cleveland Clinic |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Piyush Mathur |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Anesthesiology, Cleveland Clinic, Cleveland, OH 44195, USA |
| authorships[6].author.id | https://openalex.org/A5018021666 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5824-4900 |
| authorships[6].author.display_name | Sandeep Reddy |
| authorships[6].countries | AU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[6].affiliations[0].raw_affiliation_string | Chair, Healthcare Operations, Deakin University, Geelong, VIC 3216, Australia |
| authorships[6].institutions[0].id | https://openalex.org/I149704539 |
| authorships[6].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[6].institutions[0].country_code | AU |
| authorships[6].institutions[0].display_name | Deakin University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sandeep Reddy |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Chair, Healthcare Operations, Deakin University, Geelong, VIC 3216, Australia |
| authorships[7].author.id | https://openalex.org/A5036362467 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2079-8684 |
| authorships[7].author.display_name | Shyam Visweswaran |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206-3701, USA |
| authorships[7].institutions[0].id | https://openalex.org/I170201317 |
| authorships[7].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Pittsburgh |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Shyam Visweswaran |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206-3701, USA |
| authorships[8].author.id | https://openalex.org/A5040795468 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | T. N. Prabhu |
| authorships[8].countries | IN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210130696 |
| authorships[8].affiliations[0].raw_affiliation_string | Chief Medical Information Officer, Apollo Hospitals, Chennai 600006, TN, India |
| authorships[8].institutions[0].id | https://openalex.org/I4210130696 |
| authorships[8].institutions[0].ror | https://ror.org/035fmf715 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210130696 |
| authorships[8].institutions[0].country_code | IN |
| authorships[8].institutions[0].display_name | Apollo Hospitals |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Thanga Prabhu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Chief Medical Information Officer, Apollo Hospitals, Chennai 600006, TN, India |
| authorships[9].author.id | https://openalex.org/A5066746321 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-5200-7018 |
| authorships[9].author.display_name | Khalid Moidu |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I147878501 |
| authorships[9].affiliations[0].raw_affiliation_string | Chief Information Officer Consultant, Orlando, FL, USA |
| authorships[9].institutions[0].id | https://openalex.org/I147878501 |
| authorships[9].institutions[0].ror | https://ror.org/0488cct49 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I147878501 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Orlando Health |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Khalid Moidu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Chief Information Officer Consultant, Orlando, FL, USA |
| authorships[10].author.id | https://openalex.org/A5016286778 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-3869-5808 |
| authorships[10].author.display_name | Sandosh Padmanabhan |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I7882870 |
| authorships[10].affiliations[0].raw_affiliation_string | School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA Glasgow, UK |
| authorships[10].institutions[0].id | https://openalex.org/I7882870 |
| authorships[10].institutions[0].ror | https://ror.org/00vtgdb53 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I7882870 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | University of Glasgow |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Sandosh Padmanabhan |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA Glasgow, UK |
| authorships[11].author.id | https://openalex.org/A5072824454 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-4383-3411 |
| authorships[11].author.display_name | Rahul Kashyap |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I1330342723, https://openalex.org/I4210111146 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Anesthesiology and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Research, WellSpan Health, York, PA 17403, USA |
| authorships[11].institutions[0].id | https://openalex.org/I1330342723 |
| authorships[11].institutions[0].ror | https://ror.org/02qp3tb03 |
| authorships[11].institutions[0].type | healthcare |
| authorships[11].institutions[0].lineage | https://openalex.org/I1330342723 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Mayo Clinic |
| authorships[11].institutions[1].id | https://openalex.org/I4210111146 |
| authorships[11].institutions[1].ror | https://ror.org/01nknep14 |
| authorships[11].institutions[1].type | healthcare |
| authorships[11].institutions[1].lineage | https://openalex.org/I4210111146 |
| authorships[11].institutions[1].country_code | US |
| authorships[11].institutions[1].display_name | WellSpan Health |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Rahul Kashyap |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Anesthesiology and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Research, WellSpan Health, York, PA 17403, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.37349/edht.2024.00018 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HUMANE: Harmonious Understanding of Machine Learning Analytics Network—global consensus for research on artificial intelligence in medicine |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4390482427 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.37349/edht.2024.00018 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407042611 |
| best_oa_location.source.issn | 2996-9409 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2996-9409 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Exploration of Digital Health Technologies |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Exploration of Digital Health Technologies |
| best_oa_location.landing_page_url | https://doi.org/10.37349/edht.2024.00018 |
| primary_location.id | doi:10.37349/edht.2024.00018 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407042611 |
| primary_location.source.issn | 2996-9409 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2996-9409 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Exploration of Digital Health Technologies |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Exploration of Digital Health Technologies |
| primary_location.landing_page_url | https://doi.org/10.37349/edht.2024.00018 |
| publication_date | 2024-06-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2576404523, https://openalex.org/W2964996949, https://openalex.org/W2994731224, https://openalex.org/W2886281300, https://openalex.org/W2893693469, https://openalex.org/W3020514163, https://openalex.org/W3013042152, https://openalex.org/W3046238651, https://openalex.org/W3137245688, https://openalex.org/W3138291572, https://openalex.org/W3013294478, https://openalex.org/W3016087461, https://openalex.org/W1994682257, https://openalex.org/W4233026002, https://openalex.org/W3188019074, https://openalex.org/W2562251009, https://openalex.org/W3091673453, https://openalex.org/W3030588587, https://openalex.org/W2932613184, https://openalex.org/W2789970635, https://openalex.org/W4282938284, https://openalex.org/W4367368062 |
| referenced_works_count | 22 |
| abstract_inverted_index.3 | 175 |
| abstract_inverted_index.8 | 125, 268 |
| abstract_inverted_index.A | 136 |
| abstract_inverted_index.a | 33, 48, 54, 74, 110, 122, 131, 178, 265 |
| abstract_inverted_index.33 | 139 |
| abstract_inverted_index.5) | 201 |
| abstract_inverted_index.50 | 271 |
| abstract_inverted_index.56 | 128 |
| abstract_inverted_index.AI | 1, 37, 60 |
| abstract_inverted_index.UK | 167 |
| abstract_inverted_index.We | 64 |
| abstract_inverted_index.an | 9, 78, 192, 290 |
| abstract_inverted_index.as | 121, 172, 183, 202, 289 |
| abstract_inverted_index.at | 8, 29 |
| abstract_inverted_index.by | 108 |
| abstract_inverted_index.in | 17, 36, 52, 58, 61, 86, 97, 153, 293, 301 |
| abstract_inverted_index.of | 32, 50, 69, 138, 144, 200, 210, 220, 254, 267, 286, 299 |
| abstract_inverted_index.on | 89, 280, 283 |
| abstract_inverted_index.or | 93 |
| abstract_inverted_index.to | 22, 47 |
| abstract_inverted_index.4.1 | 242, 251 |
| abstract_inverted_index.4.8 | 224 |
| abstract_inverted_index.The | 117, 159, 208, 257, 274 |
| abstract_inverted_index.USA | 165 |
| abstract_inverted_index.age | 157 |
| abstract_inverted_index.all | 28, 206 |
| abstract_inverted_index.and | 4, 83, 127, 169, 245, 262, 270, 297 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.for | 25, 56, 76, 81 |
| abstract_inverted_index.gap | 35 |
| abstract_inverted_index.has | 20, 44, 278 |
| abstract_inverted_index.led | 21 |
| abstract_inverted_index.out | 199 |
| abstract_inverted_index.the | 30, 40, 59, 105, 113, 145, 150, 154, 164, 173, 211, 216, 221, 230, 235, 246, 255, 284, 295 |
| abstract_inverted_index.top | 174 |
| abstract_inverted_index.was | 102, 119, 213, 234 |
| abstract_inverted_index.(9%) | 171 |
| abstract_inverted_index.(AI) | 92 |
| abstract_inverted_index.(IQR | 243, 252 |
| abstract_inverted_index.(ML) | 96 |
| abstract_inverted_index.Aim: | 0 |
| abstract_inverted_index.This | 14, 43, 100 |
| abstract_inverted_index.lack | 49 |
| abstract_inverted_index.pace | 11 |
| abstract_inverted_index.part | 143 |
| abstract_inverted_index.this | 287, 302 |
| abstract_inverted_index.were | 142, 161 |
| abstract_inverted_index.with | 130, 149, 177, 215 |
| abstract_inverted_index.(42%) | 182 |
| abstract_inverted_index.(45%) | 152 |
| abstract_inverted_index.(IQR) | 227 |
| abstract_inverted_index.(mean | 196 |
| abstract_inverted_index.Forms | 115 |
| abstract_inverted_index.Truth | 237 |
| abstract_inverted_index.after | 260 |
| abstract_inverted_index.final | 258 |
| abstract_inverted_index.least | 231 |
| abstract_inverted_index.range | 226 |
| abstract_inverted_index.shift | 16 |
| abstract_inverted_index.study | 101 |
| abstract_inverted_index.tools | 51 |
| abstract_inverted_index.total | 137, 266 |
| abstract_inverted_index.using | 104, 112 |
| abstract_inverted_index.years | 156 |
| abstract_inverted_index.(24%), | 168 |
| abstract_inverted_index.(42%). | 189 |
| abstract_inverted_index.(61%), | 166 |
| abstract_inverted_index.Delphi | 106, 147 |
| abstract_inverted_index.Google | 114 |
| abstract_inverted_index.Ground | 236 |
| abstract_inverted_index.HUMANE | 66, 275 |
| abstract_inverted_index.Likert | 133 |
| abstract_inverted_index.across | 12, 163 |
| abstract_inverted_index.agreed | 232 |
| abstract_inverted_index.field. | 42, 303 |
| abstract_inverted_index.group. | 158 |
| abstract_inverted_index.method | 107 |
| abstract_inverted_index.ranges | 197 |
| abstract_inverted_index.scale. | 134 |
| abstract_inverted_index.scores | 204 |
| abstract_inverted_index.showed | 191 |
| abstract_inverted_index.survey | 111, 118, 140 |
| abstract_inverted_index.within | 39 |
| abstract_inverted_index.(3–10 | 186 |
| abstract_inverted_index.(Other) | 218 |
| abstract_inverted_index.(median | 223, 241, 250 |
| abstract_inverted_index.36–45 | 155 |
| abstract_inverted_index.5-point | 132 |
| abstract_inverted_index.Machine | 70 |
| abstract_inverted_index.Methods | 247 |
| abstract_inverted_index.authors | 82 |
| abstract_inverted_index.demands | 24 |
| abstract_inverted_index.domain. | 63 |
| abstract_inverted_index.expense | 31 |
| abstract_inverted_index.focused | 88 |
| abstract_inverted_index.further | 45, 281 |
| abstract_inverted_index.initial | 146 |
| abstract_inverted_index.located | 162 |
| abstract_inverted_index.machine | 94 |
| abstract_inverted_index.overall | 193 |
| abstract_inverted_index.process | 148 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.quality | 298 |
| abstract_inverted_index.review) | 239 |
| abstract_inverted_index.section | 219, 233, 240, 249 |
| abstract_inverted_index.whereas | 229 |
| abstract_inverted_index.Feedback | 190 |
| abstract_inverted_index.Learning | 71 |
| abstract_inverted_index.Methods: | 99 |
| abstract_inverted_index.Results: | 135 |
| abstract_inverted_index.clinical | 26 |
| abstract_inverted_index.creating | 53 |
| abstract_inverted_index.devising | 109 |
| abstract_inverted_index.included | 264 |
| abstract_inverted_index.involved | 85 |
| abstract_inverted_index.learning | 95 |
| abstract_inverted_index.literacy | 38 |
| abstract_inverted_index.majority | 151, 209 |
| abstract_inverted_index.medicine | 62 |
| abstract_inverted_index.paradigm | 15 |
| abstract_inverted_index.research | 19, 87, 282, 300 |
| abstract_inverted_index.revision | 263 |
| abstract_inverted_index.sections | 126, 269 |
| abstract_inverted_index.years’ | 187 |
| abstract_inverted_index.Analytics | 72 |
| abstract_inverted_index.Australia | 170 |
| abstract_inverted_index.Network), | 73 |
| abstract_inverted_index.agreeable | 194, 214 |
| abstract_inverted_index.checklist | 75, 123, 222, 259, 288 |
| abstract_inverted_index.conducted | 103 |
| abstract_inverted_index.consensus | 80, 195, 212, 261, 277, 292 |
| abstract_inverted_index.developed | 120 |
| abstract_inverted_index.expanding | 7 |
| abstract_inverted_index.framework | 55 |
| abstract_inverted_index.improving | 294 |
| abstract_inverted_index.increased | 23 |
| abstract_inverted_index.medicine. | 98 |
| abstract_inverted_index.outcomes, | 27 |
| abstract_inverted_index.platform. | 116 |
| abstract_inverted_index.potential | 285 |
| abstract_inverted_index.questions | 129 |
| abstract_inverted_index.reflected | 279 |
| abstract_inverted_index.research, | 2 |
| abstract_inverted_index.reviewers | 84 |
| abstract_inverted_index.sections. | 207 |
| abstract_inverted_index.(Expert(s) | 238 |
| abstract_inverted_index.(Outcomes) | 248 |
| abstract_inverted_index.4.1–4.8, | 198 |
| abstract_inverted_index.4.8-4.8)), | 228 |
| abstract_inverted_index.Discussion | 217 |
| abstract_inverted_index.artificial | 90 |
| abstract_inverted_index.background | 181 |
| abstract_inverted_index.checklist. | 256 |
| abstract_inverted_index.containing | 124 |
| abstract_inverted_index.countries, | 176 |
| abstract_inverted_index.cumulative | 203 |
| abstract_inverted_index.healthcare | 18, 41, 180 |
| abstract_inverted_index.literature | 57 |
| abstract_inverted_index.questions. | 272 |
| abstract_inverted_index.throughout | 205 |
| abstract_inverted_index.translated | 46 |
| abstract_inverted_index.(Harmonious | 67 |
| abstract_inverted_index.3.9–4.2)) | 244 |
| abstract_inverted_index.4.1–4.1)) | 253 |
| abstract_inverted_index.established | 291 |
| abstract_inverted_index.experience) | 188 |
| abstract_inverted_index.exponential | 10 |
| abstract_inverted_index.healthcare. | 13 |
| abstract_inverted_index.reliability | 296 |
| abstract_inverted_index.respondents | 141, 160 |
| abstract_inverted_index.significant | 34 |
| abstract_inverted_index.Conclusions: | 273 |
| abstract_inverted_index.development, | 3 |
| abstract_inverted_index.early-career | 184 |
| abstract_inverted_index.establishing | 77 |
| abstract_inverted_index.intelligence | 91 |
| abstract_inverted_index.pre-dominant | 179 |
| abstract_inverted_index.Understanding | 68 |
| abstract_inverted_index.international | 79, 276 |
| abstract_inverted_index.professionals | 185 |
| abstract_inverted_index.(interquartile | 225 |
| abstract_inverted_index.implementation | 5 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 5 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.50262115 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |