HV-BEV: Decoupling Horizontal and Vertical Feature Sampling for Multi-View 3D Object Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.18884
The application of vision-based multi-view environmental perception system has been increasingly recognized in autonomous driving technology, especially the BEV-based models. Current state-of-the-art solutions primarily encode image features from each camera view into the BEV space through explicit or implicit depth prediction. However, these methods often overlook the structured correlations among different parts of objects in 3D space and the fact that different categories of objects often occupy distinct local height ranges. For example, trucks appear at higher elevations, whereas traffic cones are near the ground. In this work, we propose a novel approach that decouples feature sampling in the \textbf{BEV} grid queries paradigm into \textbf{H}orizontal feature aggregation and \textbf{V}ertical adaptive height-aware reference point sampling (HV-BEV), aiming to improve both the aggregation of objects' complete information and awareness of diverse objects' height distribution. Specifically, a set of relevant neighboring points is dynamically constructed for each 3D reference point on the ground-aligned horizontal plane, enhancing the association of the same instance across different BEV grids, especially when the instance spans multiple image views around the vehicle. Additionally, instead of relying on uniform sampling within a fixed height range, we introduce a height-aware module that incorporates historical information, enabling the reference points to adaptively focus on the varying heights at which objects appear in different scenes. Extensive experiments validate the effectiveness of our proposed method, demonstrating its superior performance over the baseline across the nuScenes dataset. Moreover, our best-performing model achieves a remarkable 50.5\% mAP and 59.8\% NDS on the nuScenes testing set. The code is available at https://github.com/Uddd821/HV-BEV.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.18884
- https://arxiv.org/pdf/2412.18884
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405900719
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405900719Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.18884Digital Object Identifier
- Title
-
HV-BEV: Decoupling Horizontal and Vertical Feature Sampling for Multi-View 3D Object DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-25Full publication date if available
- Authors
-
Di Wu, Feng Yang, Benlian Xu, Pan Liao, Wenhui Zhao, Dingwen ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.18884Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.18884Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.18884Direct OA link when available
- Concepts
-
Decoupling (probability), Horizontal and vertical, Object (grammar), Feature (linguistics), Computer vision, Computer science, Artificial intelligence, Sampling (signal processing), Object detection, Pattern recognition (psychology), Geology, Geodesy, Engineering, Linguistics, Philosophy, Filter (signal processing), Control engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405900719 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.18884 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.18884 |
| ids.openalex | https://openalex.org/W4405900719 |
| fwci | |
| type | preprint |
| title | HV-BEV: Decoupling Horizontal and Vertical Feature Sampling for Multi-View 3D Object Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9955999851226807 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926999807357788 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9819999933242798 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205606062 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8321210145950317 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5249645 |
| concepts[0].display_name | Decoupling (probability) |
| concepts[1].id | https://openalex.org/C59218005 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6739968061447144 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17027571 |
| concepts[1].display_name | Horizontal and vertical |
| concepts[2].id | https://openalex.org/C2781238097 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5889581441879272 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[2].display_name | Object (grammar) |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5842468738555908 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5561625361442566 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.536902666091919 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5256593823432922 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C140779682 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4753406047821045 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[7].display_name | Sampling (signal processing) |
| concepts[8].id | https://openalex.org/C2776151529 |
| concepts[8].level | 3 |
| concepts[8].score | 0.43932610750198364 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[8].display_name | Object detection |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.27889448404312134 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.27254194021224976 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C13280743 |
| concepts[11].level | 1 |
| concepts[11].score | 0.24098750948905945 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[11].display_name | Geodesy |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.13048183917999268 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C106131492 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[15].display_name | Filter (signal processing) |
| concepts[16].id | https://openalex.org/C133731056 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[16].display_name | Control engineering |
| keywords[0].id | https://openalex.org/keywords/decoupling |
| keywords[0].score | 0.8321210145950317 |
| keywords[0].display_name | Decoupling (probability) |
| keywords[1].id | https://openalex.org/keywords/horizontal-and-vertical |
| keywords[1].score | 0.6739968061447144 |
| keywords[1].display_name | Horizontal and vertical |
| keywords[2].id | https://openalex.org/keywords/object |
| keywords[2].score | 0.5889581441879272 |
| keywords[2].display_name | Object (grammar) |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.5842468738555908 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5561625361442566 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.536902666091919 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5256593823432922 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/sampling |
| keywords[7].score | 0.4753406047821045 |
| keywords[7].display_name | Sampling (signal processing) |
| keywords[8].id | https://openalex.org/keywords/object-detection |
| keywords[8].score | 0.43932610750198364 |
| keywords[8].display_name | Object detection |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.27889448404312134 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.27254194021224976 |
| keywords[10].display_name | Geology |
| keywords[11].id | https://openalex.org/keywords/geodesy |
| keywords[11].score | 0.24098750948905945 |
| keywords[11].display_name | Geodesy |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.13048183917999268 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.18884 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.18884 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.18884 |
| locations[1].id | doi:10.48550/arxiv.2412.18884 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.18884 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5011648245 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3619-1411 |
| authorships[0].author.display_name | Di Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Di |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5066146166 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4854-6331 |
| authorships[1].author.display_name | Feng Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Feng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038564706 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6709-6583 |
| authorships[2].author.display_name | Benlian Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Benlian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006645886 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7269-9231 |
| authorships[3].author.display_name | Pan Liao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liao, Pan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5076775815 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5538-8706 |
| authorships[4].author.display_name | Wenhui Zhao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhao, Wenhui |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101954574 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8369-8886 |
| authorships[5].author.display_name | Dingwen Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhang, Dingwen |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.18884 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HV-BEV: Decoupling Horizontal and Vertical Feature Sampling for Multi-View 3D Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9955999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W4313561376, https://openalex.org/W3103825105, https://openalex.org/W3027880158, https://openalex.org/W3207533102, https://openalex.org/W1617565119, https://openalex.org/W160381218, https://openalex.org/W2512958550, https://openalex.org/W2004102934, https://openalex.org/W4366455350, https://openalex.org/W2329266651 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.18884 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.18884 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.18884 |
| primary_location.id | pmh:oai:arXiv.org:2412.18884 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.18884 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.18884 |
| publication_date | 2024-12-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 90, 133, 182, 188, 238 |
| abstract_inverted_index.3D | 55, 144 |
| abstract_inverted_index.In | 85 |
| abstract_inverted_index.at | 75, 206, 254 |
| abstract_inverted_index.in | 12, 54, 97, 210 |
| abstract_inverted_index.is | 139, 252 |
| abstract_inverted_index.of | 2, 52, 63, 121, 127, 135, 155, 176, 218 |
| abstract_inverted_index.on | 147, 178, 202, 245 |
| abstract_inverted_index.or | 37 |
| abstract_inverted_index.to | 116, 199 |
| abstract_inverted_index.we | 88, 186 |
| abstract_inverted_index.BEV | 33, 161 |
| abstract_inverted_index.For | 71 |
| abstract_inverted_index.NDS | 244 |
| abstract_inverted_index.The | 0, 250 |
| abstract_inverted_index.and | 57, 107, 125, 242 |
| abstract_inverted_index.are | 81 |
| abstract_inverted_index.for | 142 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.its | 223 |
| abstract_inverted_index.mAP | 241 |
| abstract_inverted_index.our | 219, 234 |
| abstract_inverted_index.set | 134 |
| abstract_inverted_index.the | 17, 32, 46, 58, 83, 98, 119, 148, 153, 156, 165, 172, 196, 203, 216, 227, 230, 246 |
| abstract_inverted_index.been | 9 |
| abstract_inverted_index.both | 118 |
| abstract_inverted_index.code | 251 |
| abstract_inverted_index.each | 28, 143 |
| abstract_inverted_index.fact | 59 |
| abstract_inverted_index.from | 27 |
| abstract_inverted_index.grid | 100 |
| abstract_inverted_index.into | 31, 103 |
| abstract_inverted_index.near | 82 |
| abstract_inverted_index.over | 226 |
| abstract_inverted_index.same | 157 |
| abstract_inverted_index.set. | 249 |
| abstract_inverted_index.that | 60, 93, 191 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.view | 30 |
| abstract_inverted_index.when | 164 |
| abstract_inverted_index.among | 49 |
| abstract_inverted_index.cones | 80 |
| abstract_inverted_index.depth | 39 |
| abstract_inverted_index.fixed | 183 |
| abstract_inverted_index.focus | 201 |
| abstract_inverted_index.image | 25, 169 |
| abstract_inverted_index.local | 68 |
| abstract_inverted_index.model | 236 |
| abstract_inverted_index.novel | 91 |
| abstract_inverted_index.often | 44, 65 |
| abstract_inverted_index.parts | 51 |
| abstract_inverted_index.point | 112, 146 |
| abstract_inverted_index.space | 34, 56 |
| abstract_inverted_index.spans | 167 |
| abstract_inverted_index.these | 42 |
| abstract_inverted_index.views | 170 |
| abstract_inverted_index.which | 207 |
| abstract_inverted_index.work, | 87 |
| abstract_inverted_index.50.5\% | 240 |
| abstract_inverted_index.59.8\% | 243 |
| abstract_inverted_index.across | 159, 229 |
| abstract_inverted_index.aiming | 115 |
| abstract_inverted_index.appear | 74, 209 |
| abstract_inverted_index.around | 171 |
| abstract_inverted_index.camera | 29 |
| abstract_inverted_index.encode | 24 |
| abstract_inverted_index.grids, | 162 |
| abstract_inverted_index.height | 69, 130, 184 |
| abstract_inverted_index.higher | 76 |
| abstract_inverted_index.module | 190 |
| abstract_inverted_index.occupy | 66 |
| abstract_inverted_index.plane, | 151 |
| abstract_inverted_index.points | 138, 198 |
| abstract_inverted_index.range, | 185 |
| abstract_inverted_index.system | 7 |
| abstract_inverted_index.trucks | 73 |
| abstract_inverted_index.within | 181 |
| abstract_inverted_index.Current | 20 |
| abstract_inverted_index.diverse | 128 |
| abstract_inverted_index.driving | 14 |
| abstract_inverted_index.feature | 95, 105 |
| abstract_inverted_index.ground. | 84 |
| abstract_inverted_index.heights | 205 |
| abstract_inverted_index.improve | 117 |
| abstract_inverted_index.instead | 175 |
| abstract_inverted_index.method, | 221 |
| abstract_inverted_index.methods | 43 |
| abstract_inverted_index.models. | 19 |
| abstract_inverted_index.objects | 53, 64, 208 |
| abstract_inverted_index.propose | 89 |
| abstract_inverted_index.queries | 101 |
| abstract_inverted_index.ranges. | 70 |
| abstract_inverted_index.relying | 177 |
| abstract_inverted_index.scenes. | 212 |
| abstract_inverted_index.testing | 248 |
| abstract_inverted_index.through | 35 |
| abstract_inverted_index.traffic | 79 |
| abstract_inverted_index.uniform | 179 |
| abstract_inverted_index.varying | 204 |
| abstract_inverted_index.whereas | 78 |
| abstract_inverted_index.However, | 41 |
| abstract_inverted_index.achieves | 237 |
| abstract_inverted_index.adaptive | 109 |
| abstract_inverted_index.approach | 92 |
| abstract_inverted_index.baseline | 228 |
| abstract_inverted_index.complete | 123 |
| abstract_inverted_index.dataset. | 232 |
| abstract_inverted_index.distinct | 67 |
| abstract_inverted_index.enabling | 195 |
| abstract_inverted_index.example, | 72 |
| abstract_inverted_index.explicit | 36 |
| abstract_inverted_index.features | 26 |
| abstract_inverted_index.implicit | 38 |
| abstract_inverted_index.instance | 158, 166 |
| abstract_inverted_index.multiple | 168 |
| abstract_inverted_index.nuScenes | 231, 247 |
| abstract_inverted_index.objects' | 122, 129 |
| abstract_inverted_index.overlook | 45 |
| abstract_inverted_index.paradigm | 102 |
| abstract_inverted_index.proposed | 220 |
| abstract_inverted_index.relevant | 136 |
| abstract_inverted_index.sampling | 96, 113, 180 |
| abstract_inverted_index.superior | 224 |
| abstract_inverted_index.validate | 215 |
| abstract_inverted_index.vehicle. | 173 |
| abstract_inverted_index.(HV-BEV), | 114 |
| abstract_inverted_index.BEV-based | 18 |
| abstract_inverted_index.Extensive | 213 |
| abstract_inverted_index.Moreover, | 233 |
| abstract_inverted_index.available | 253 |
| abstract_inverted_index.awareness | 126 |
| abstract_inverted_index.decouples | 94 |
| abstract_inverted_index.different | 50, 61, 160, 211 |
| abstract_inverted_index.enhancing | 152 |
| abstract_inverted_index.introduce | 187 |
| abstract_inverted_index.primarily | 23 |
| abstract_inverted_index.reference | 111, 145, 197 |
| abstract_inverted_index.solutions | 22 |
| abstract_inverted_index.adaptively | 200 |
| abstract_inverted_index.autonomous | 13 |
| abstract_inverted_index.categories | 62 |
| abstract_inverted_index.especially | 16, 163 |
| abstract_inverted_index.historical | 193 |
| abstract_inverted_index.horizontal | 150 |
| abstract_inverted_index.multi-view | 4 |
| abstract_inverted_index.perception | 6 |
| abstract_inverted_index.recognized | 11 |
| abstract_inverted_index.remarkable | 239 |
| abstract_inverted_index.structured | 47 |
| abstract_inverted_index.aggregation | 106, 120 |
| abstract_inverted_index.application | 1 |
| abstract_inverted_index.association | 154 |
| abstract_inverted_index.constructed | 141 |
| abstract_inverted_index.dynamically | 140 |
| abstract_inverted_index.elevations, | 77 |
| abstract_inverted_index.experiments | 214 |
| abstract_inverted_index.information | 124 |
| abstract_inverted_index.neighboring | 137 |
| abstract_inverted_index.performance | 225 |
| abstract_inverted_index.prediction. | 40 |
| abstract_inverted_index.technology, | 15 |
| abstract_inverted_index.\textbf{BEV} | 99 |
| abstract_inverted_index.correlations | 48 |
| abstract_inverted_index.height-aware | 110, 189 |
| abstract_inverted_index.incorporates | 192 |
| abstract_inverted_index.increasingly | 10 |
| abstract_inverted_index.information, | 194 |
| abstract_inverted_index.vision-based | 3 |
| abstract_inverted_index.Additionally, | 174 |
| abstract_inverted_index.Specifically, | 132 |
| abstract_inverted_index.demonstrating | 222 |
| abstract_inverted_index.distribution. | 131 |
| abstract_inverted_index.effectiveness | 217 |
| abstract_inverted_index.environmental | 5 |
| abstract_inverted_index.ground-aligned | 149 |
| abstract_inverted_index.best-performing | 235 |
| abstract_inverted_index.state-of-the-art | 21 |
| abstract_inverted_index.\textbf{V}ertical | 108 |
| abstract_inverted_index.\textbf{H}orizontal | 104 |
| abstract_inverted_index.https://github.com/Uddd821/HV-BEV. | 255 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |