Hybrid artificial neural network algorithm for air pollution estimation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.53730/ijhs.v6ns5.9080
In recent years, airborne broadcasting has grown more prevalent in cities. Air quality degradation is a severe air pollution issue that exists daily. To forecast the amount of pollutants, Artificial Neural Network (ANN) and Linear Vector Quantization (LVQ) techniques were utilized. The data set dimensions are defined by the pre-processing procedure and the feature extraction mechanism. The ANN model predicts categorization concentration, allowing the LVQ model to classify direct situations with greater accuracy using explanatory factors. The ANN+LVQ model outperformed other technologies in terms of classification accuracy. The raw data was cleaned to improve the accuracy of the prediction algorithms. The pollutants discovered in the collection are NO2, NOx, O3, Benzene, Xylene, NH3, CO, SO2, PM10, NO, and Toluene. The performance of the recommendation and forecast models were tested in this study using two datasets in two distinct experiments. In urban, rural, and industrial settings, the proposed ANN model is successful in detecting air quality and predicting pollution levels. The ANN-LVQ model obtained 90% percent sensitivity, 97.59% accuracy, and 99.46% specificity with 2.43% error rate. The suggested model's accuracy is much greater than that of other current research models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.53730/ijhs.v6ns5.9080
- https://sciencescholar.us/journal/index.php/ijhs/article/download/9080/5201
- OA Status
- diamond
- Cited By
- 1
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283756270
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283756270Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.53730/ijhs.v6ns5.9080Digital Object Identifier
- Title
-
Hybrid artificial neural network algorithm for air pollution estimationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-16Full publication date if available
- Authors
-
Vijayalaxmi S. Kumbhar, Shaminder Singh Sohi, V. Jayaram, Pillai G Sreelekshmy, Surendra Kumar Shukla, K. Sravan AbhilashList of authors in order
- Landing page
-
https://doi.org/10.53730/ijhs.v6ns5.9080Publisher landing page
- PDF URL
-
https://sciencescholar.us/journal/index.php/ijhs/article/download/9080/5201Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://sciencescholar.us/journal/index.php/ijhs/article/download/9080/5201Direct OA link when available
- Concepts
-
Artificial neural network, Learning vector quantization, Air quality index, Computer science, Data mining, Machine learning, Artificial intelligence, Mean squared error, Meteorology, Statistics, Mathematics, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283756270 |
|---|---|
| doi | https://doi.org/10.53730/ijhs.v6ns5.9080 |
| ids.doi | https://doi.org/10.53730/ijhs.v6ns5.9080 |
| ids.openalex | https://openalex.org/W4283756270 |
| fwci | 0.09828437 |
| type | article |
| title | Hybrid artificial neural network algorithm for air pollution estimation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2106 |
| biblio.first_page | 2094 |
| topics[0].id | https://openalex.org/T12120 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Air Quality Monitoring and Forecasting |
| topics[1].id | https://openalex.org/T10190 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9797999858856201 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Air Quality and Health Impacts |
| topics[2].id | https://openalex.org/T12095 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9480999708175659 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Vehicle emissions and performance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6839123964309692 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C40567965 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6790843605995178 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1820283 |
| concepts[1].display_name | Learning vector quantization |
| concepts[2].id | https://openalex.org/C126314574 |
| concepts[2].level | 2 |
| concepts[2].score | 0.556138277053833 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2364111 |
| concepts[2].display_name | Air quality index |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5320385694503784 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4545305669307709 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4458049535751343 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4381883144378662 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C139945424 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41165655851364136 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[7].display_name | Mean squared error |
| concepts[8].id | https://openalex.org/C153294291 |
| concepts[8].level | 1 |
| concepts[8].score | 0.23672261834144592 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[8].display_name | Meteorology |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.19313907623291016 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17244696617126465 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10745474696159363 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6839123964309692 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/learning-vector-quantization |
| keywords[1].score | 0.6790843605995178 |
| keywords[1].display_name | Learning vector quantization |
| keywords[2].id | https://openalex.org/keywords/air-quality-index |
| keywords[2].score | 0.556138277053833 |
| keywords[2].display_name | Air quality index |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5320385694503784 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.4545305669307709 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4458049535751343 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4381883144378662 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/mean-squared-error |
| keywords[7].score | 0.41165655851364136 |
| keywords[7].display_name | Mean squared error |
| keywords[8].id | https://openalex.org/keywords/meteorology |
| keywords[8].score | 0.23672261834144592 |
| keywords[8].display_name | Meteorology |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.19313907623291016 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.17244696617126465 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.10745474696159363 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | doi:10.53730/ijhs.v6ns5.9080 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179027 |
| locations[0].source.issn | 2550-696X, 2550-6978 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2550-696X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Health Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://sciencescholar.us/journal/index.php/ijhs/article/download/9080/5201 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International journal of health sciences |
| locations[0].landing_page_url | https://doi.org/10.53730/ijhs.v6ns5.9080 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5065477646 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9357-8415 |
| authorships[0].author.display_name | Vijayalaxmi S. Kumbhar |
| authorships[0].affiliations[0].raw_affiliation_string | Assistant Professor, PCET's Pimpri Chinchwad College of Engineering and Research, Ravet |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vijayalaxmi S. Kumbhar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Assistant Professor, PCET's Pimpri Chinchwad College of Engineering and Research, Ravet |
| authorships[1].author.id | https://openalex.org/A5036073750 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shaminder Singh Sohi |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[1].affiliations[0].raw_affiliation_string | Assistant Professor, Chandigarh University, Gharuan, Mohali, Punjab |
| authorships[1].institutions[0].id | https://openalex.org/I101407740 |
| authorships[1].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Chandigarh University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaminder Singh Sohi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Assistant Professor, Chandigarh University, Gharuan, Mohali, Punjab |
| authorships[2].author.id | https://openalex.org/A5012946438 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | V. Jayaram |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I96797292 |
| authorships[2].affiliations[0].raw_affiliation_string | Research Scholar, Dept of Mechanical Engineering, Noorul Islam Center for Higher Education Tamilnadu |
| authorships[2].institutions[0].id | https://openalex.org/I96797292 |
| authorships[2].institutions[0].ror | https://ror.org/01y2gf490 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I96797292 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Noorul Islam University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | V Jayaram |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Research Scholar, Dept of Mechanical Engineering, Noorul Islam Center for Higher Education Tamilnadu |
| authorships[3].author.id | https://openalex.org/A5006362369 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Pillai G Sreelekshmy |
| authorships[3].affiliations[0].raw_affiliation_string | Associate Professor In Civil Engineering, NSS College Of Engineering, Palakkad |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pillai G Sreelekshmy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Associate Professor In Civil Engineering, NSS College Of Engineering, Palakkad |
| authorships[4].author.id | https://openalex.org/A5035355337 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4120-5953 |
| authorships[4].author.display_name | Surendra Kumar Shukla |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I60054993 |
| authorships[4].affiliations[0].raw_affiliation_string | Designation: Associate Professor, Department of Computer Science & Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India, 248002 |
| authorships[4].institutions[0].id | https://openalex.org/I60054993 |
| authorships[4].institutions[0].ror | https://ror.org/03wqgqd89 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I60054993 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Graphic Era University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Surendra Kumar Shukla |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Designation: Associate Professor, Department of Computer Science & Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India, 248002 |
| authorships[5].author.id | https://openalex.org/A5033595983 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | K. Sravan Abhilash |
| authorships[5].affiliations[0].raw_affiliation_string | Managing Director, EduCorp Centre for Research and Advanced Studies Pvt. Ltd. Thiruvananthapuram, Kerala |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | K S Abhilash |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Managing Director, EduCorp Centre for Research and Advanced Studies Pvt. Ltd. Thiruvananthapuram, Kerala |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://sciencescholar.us/journal/index.php/ijhs/article/download/9080/5201 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid artificial neural network algorithm for air pollution estimation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12120 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Air Quality Monitoring and Forecasting |
| related_works | https://openalex.org/W1647056466, https://openalex.org/W2137852660, https://openalex.org/W2360214423, https://openalex.org/W2156017042, https://openalex.org/W2515715595, https://openalex.org/W2513378678, https://openalex.org/W2543665684, https://openalex.org/W2154143144, https://openalex.org/W1500455187, https://openalex.org/W4383370454 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.53730/ijhs.v6ns5.9080 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179027 |
| best_oa_location.source.issn | 2550-696X, 2550-6978 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2550-696X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Health Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://sciencescholar.us/journal/index.php/ijhs/article/download/9080/5201 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International journal of health sciences |
| best_oa_location.landing_page_url | https://doi.org/10.53730/ijhs.v6ns5.9080 |
| primary_location.id | doi:10.53730/ijhs.v6ns5.9080 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179027 |
| primary_location.source.issn | 2550-696X, 2550-6978 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2550-696X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Health Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://sciencescholar.us/journal/index.php/ijhs/article/download/9080/5201 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International journal of health sciences |
| primary_location.landing_page_url | https://doi.org/10.53730/ijhs.v6ns5.9080 |
| publication_date | 2022-06-16 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2770167649, https://openalex.org/W1975435017, https://openalex.org/W2020770753, https://openalex.org/W2886875452, https://openalex.org/W2766271857, https://openalex.org/W2182129223, https://openalex.org/W3193465739, https://openalex.org/W6786584500, https://openalex.org/W3126841703, https://openalex.org/W2993219986, https://openalex.org/W2894936342, https://openalex.org/W2898461917, https://openalex.org/W2490822285, https://openalex.org/W3110020064 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 15 |
| abstract_inverted_index.In | 0, 139 |
| abstract_inverted_index.To | 23 |
| abstract_inverted_index.by | 47 |
| abstract_inverted_index.in | 9, 82, 103, 129, 135, 151 |
| abstract_inverted_index.is | 14, 149, 179 |
| abstract_inverted_index.of | 27, 84, 96, 121, 184 |
| abstract_inverted_index.to | 66, 92 |
| abstract_inverted_index.90% | 163 |
| abstract_inverted_index.ANN | 57, 147 |
| abstract_inverted_index.Air | 11 |
| abstract_inverted_index.CO, | 113 |
| abstract_inverted_index.LVQ | 64 |
| abstract_inverted_index.NO, | 116 |
| abstract_inverted_index.O3, | 109 |
| abstract_inverted_index.The | 41, 56, 76, 87, 100, 119, 159, 175 |
| abstract_inverted_index.air | 17, 153 |
| abstract_inverted_index.and | 33, 51, 117, 124, 142, 155, 168 |
| abstract_inverted_index.are | 45, 106 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.raw | 88 |
| abstract_inverted_index.set | 43 |
| abstract_inverted_index.the | 25, 48, 52, 63, 94, 97, 104, 122, 145 |
| abstract_inverted_index.two | 133, 136 |
| abstract_inverted_index.was | 90 |
| abstract_inverted_index.NH3, | 112 |
| abstract_inverted_index.NO2, | 107 |
| abstract_inverted_index.NOx, | 108 |
| abstract_inverted_index.SO2, | 114 |
| abstract_inverted_index.data | 42, 89 |
| abstract_inverted_index.more | 7 |
| abstract_inverted_index.much | 180 |
| abstract_inverted_index.than | 182 |
| abstract_inverted_index.that | 20, 183 |
| abstract_inverted_index.this | 130 |
| abstract_inverted_index.were | 39, 127 |
| abstract_inverted_index.with | 70, 171 |
| abstract_inverted_index.(ANN) | 32 |
| abstract_inverted_index.(LVQ) | 37 |
| abstract_inverted_index.2.43% | 172 |
| abstract_inverted_index.PM10, | 115 |
| abstract_inverted_index.error | 173 |
| abstract_inverted_index.grown | 6 |
| abstract_inverted_index.issue | 19 |
| abstract_inverted_index.model | 58, 65, 78, 148, 161 |
| abstract_inverted_index.other | 80, 185 |
| abstract_inverted_index.rate. | 174 |
| abstract_inverted_index.study | 131 |
| abstract_inverted_index.terms | 83 |
| abstract_inverted_index.using | 73, 132 |
| abstract_inverted_index.97.59% | 166 |
| abstract_inverted_index.99.46% | 169 |
| abstract_inverted_index.Linear | 34 |
| abstract_inverted_index.Neural | 30 |
| abstract_inverted_index.Vector | 35 |
| abstract_inverted_index.amount | 26 |
| abstract_inverted_index.daily. | 22 |
| abstract_inverted_index.direct | 68 |
| abstract_inverted_index.exists | 21 |
| abstract_inverted_index.models | 126 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.rural, | 141 |
| abstract_inverted_index.severe | 16 |
| abstract_inverted_index.tested | 128 |
| abstract_inverted_index.urban, | 140 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.ANN+LVQ | 77 |
| abstract_inverted_index.ANN-LVQ | 160 |
| abstract_inverted_index.Network | 31 |
| abstract_inverted_index.Xylene, | 111 |
| abstract_inverted_index.cities. | 10 |
| abstract_inverted_index.cleaned | 91 |
| abstract_inverted_index.current | 186 |
| abstract_inverted_index.defined | 46 |
| abstract_inverted_index.feature | 53 |
| abstract_inverted_index.greater | 71, 181 |
| abstract_inverted_index.improve | 93 |
| abstract_inverted_index.levels. | 158 |
| abstract_inverted_index.model's | 177 |
| abstract_inverted_index.models. | 188 |
| abstract_inverted_index.percent | 164 |
| abstract_inverted_index.quality | 12, 154 |
| abstract_inverted_index.Benzene, | 110 |
| abstract_inverted_index.Toluene. | 118 |
| abstract_inverted_index.accuracy | 72, 95, 178 |
| abstract_inverted_index.airborne | 3 |
| abstract_inverted_index.allowing | 62 |
| abstract_inverted_index.classify | 67 |
| abstract_inverted_index.datasets | 134 |
| abstract_inverted_index.distinct | 137 |
| abstract_inverted_index.factors. | 75 |
| abstract_inverted_index.forecast | 24, 125 |
| abstract_inverted_index.obtained | 162 |
| abstract_inverted_index.predicts | 59 |
| abstract_inverted_index.proposed | 146 |
| abstract_inverted_index.research | 187 |
| abstract_inverted_index.accuracy, | 167 |
| abstract_inverted_index.accuracy. | 86 |
| abstract_inverted_index.detecting | 152 |
| abstract_inverted_index.pollution | 18, 157 |
| abstract_inverted_index.prevalent | 8 |
| abstract_inverted_index.procedure | 50 |
| abstract_inverted_index.settings, | 144 |
| abstract_inverted_index.suggested | 176 |
| abstract_inverted_index.utilized. | 40 |
| abstract_inverted_index.Artificial | 29 |
| abstract_inverted_index.collection | 105 |
| abstract_inverted_index.dimensions | 44 |
| abstract_inverted_index.discovered | 102 |
| abstract_inverted_index.extraction | 54 |
| abstract_inverted_index.industrial | 143 |
| abstract_inverted_index.mechanism. | 55 |
| abstract_inverted_index.pollutants | 101 |
| abstract_inverted_index.predicting | 156 |
| abstract_inverted_index.prediction | 98 |
| abstract_inverted_index.situations | 69 |
| abstract_inverted_index.successful | 150 |
| abstract_inverted_index.techniques | 38 |
| abstract_inverted_index.algorithms. | 99 |
| abstract_inverted_index.degradation | 13 |
| abstract_inverted_index.explanatory | 74 |
| abstract_inverted_index.performance | 120 |
| abstract_inverted_index.pollutants, | 28 |
| abstract_inverted_index.specificity | 170 |
| abstract_inverted_index.Quantization | 36 |
| abstract_inverted_index.broadcasting | 4 |
| abstract_inverted_index.experiments. | 138 |
| abstract_inverted_index.outperformed | 79 |
| abstract_inverted_index.sensitivity, | 165 |
| abstract_inverted_index.technologies | 81 |
| abstract_inverted_index.categorization | 60 |
| abstract_inverted_index.classification | 85 |
| abstract_inverted_index.concentration, | 61 |
| abstract_inverted_index.pre-processing | 49 |
| abstract_inverted_index.recommendation | 123 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.36617396 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |