Hybrid CNN-GRU Model for Real-Time Blood Glucose Forecasting: Enhancing IoT-Based Diabetes Management with AI Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/s24237670
For people with diabetes, controlling blood glucose level (BGL) is a significant issue since the disease affects how the body metabolizes food, which makes careful insulin regulation necessary. Patients have to manually check their blood sugar levels, which can be laborious and inaccurate. Many variables affect BGL changes, making accurate prediction challenging. To anticipate BGL many steps ahead, we propose a novel hybrid deep learning model framework based on Gated Recurrent Units (GRUs) and Convolutional Neural Networks (CNNs), which can be integrated into the Internet of Things (IoT)-enabled diabetes management systems, improving prediction accuracy and timeliness by allowing real-time data processing on edge devices. While the GRU layer records temporal relationships and sequence information, the CNN layer analyzes the incoming data to extract significant features. Using a publicly accessible type 1 diabetes dataset, the hybrid model’s performance is compared to that of the standalone Long Short-Term Memory (LSTM), CNN, and GRU models. The findings show that the hybrid CNN-GRU model performs better than the single models, indicating its potential to significantly improve real-time BGL forecasting in IoT-based diabetes management systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s24237670
- OA Status
- gold
- Cited By
- 5
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405002166
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405002166Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s24237670Digital Object Identifier
- Title
-
Hybrid CNN-GRU Model for Real-Time Blood Glucose Forecasting: Enhancing IoT-Based Diabetes Management with AIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-30Full publication date if available
- Authors
-
Reem Alkanhel, Hager Saleh, Ahmed Elaraby, Saleh Alharbi, Hela Elmannai, Saad Alaklabi, Saeed Hamood Alsamhi, Sherif MostafaList of authors in order
- Landing page
-
https://doi.org/10.3390/s24237670Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/s24237670Direct OA link when available
- Concepts
-
Computer science, Diabetes management, Internet of Things, Artificial intelligence, Diabetes mellitus, Machine learning, Real-time computing, Medicine, Embedded system, Type 2 diabetes, EndocrinologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405002166 |
|---|---|
| doi | https://doi.org/10.3390/s24237670 |
| ids.doi | https://doi.org/10.3390/s24237670 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39686207 |
| ids.openalex | https://openalex.org/W4405002166 |
| fwci | 7.19546742 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016571 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Neural Networks, Computer |
| mesh[2].qualifier_ui | Q000032 |
| mesh[2].descriptor_ui | D001786 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | analysis |
| mesh[2].descriptor_name | Blood Glucose |
| mesh[3].qualifier_ui | Q000378 |
| mesh[3].descriptor_ui | D001786 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | metabolism |
| mesh[3].descriptor_name | Blood Glucose |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000080487 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Internet of Things |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000077321 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Deep Learning |
| mesh[6].qualifier_ui | Q000097 |
| mesh[6].descriptor_ui | D003922 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | blood |
| mesh[6].descriptor_name | Diabetes Mellitus, Type 1 |
| mesh[7].qualifier_ui | Q000628 |
| mesh[7].descriptor_ui | D003922 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | therapy |
| mesh[7].descriptor_name | Diabetes Mellitus, Type 1 |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D015190 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Blood Glucose Self-Monitoring |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D005544 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Forecasting |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| mesh[12].qualifier_ui | Q000032 |
| mesh[12].descriptor_ui | D001786 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | analysis |
| mesh[12].descriptor_name | Blood Glucose |
| mesh[13].qualifier_ui | Q000378 |
| mesh[13].descriptor_ui | D001786 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | metabolism |
| mesh[13].descriptor_name | Blood Glucose |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000080487 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Internet of Things |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000077321 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Deep Learning |
| mesh[16].qualifier_ui | Q000097 |
| mesh[16].descriptor_ui | D003922 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | blood |
| mesh[16].descriptor_name | Diabetes Mellitus, Type 1 |
| mesh[17].qualifier_ui | Q000628 |
| mesh[17].descriptor_ui | D003922 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | therapy |
| mesh[17].descriptor_name | Diabetes Mellitus, Type 1 |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D015190 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Blood Glucose Self-Monitoring |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D005544 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Forecasting |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D016571 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Neural Networks, Computer |
| mesh[22].qualifier_ui | Q000032 |
| mesh[22].descriptor_ui | D001786 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | analysis |
| mesh[22].descriptor_name | Blood Glucose |
| mesh[23].qualifier_ui | Q000378 |
| mesh[23].descriptor_ui | D001786 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | metabolism |
| mesh[23].descriptor_name | Blood Glucose |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000080487 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Internet of Things |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000077321 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Deep Learning |
| mesh[26].qualifier_ui | Q000097 |
| mesh[26].descriptor_ui | D003922 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | blood |
| mesh[26].descriptor_name | Diabetes Mellitus, Type 1 |
| mesh[27].qualifier_ui | Q000628 |
| mesh[27].descriptor_ui | D003922 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | therapy |
| mesh[27].descriptor_name | Diabetes Mellitus, Type 1 |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D015190 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Blood Glucose Self-Monitoring |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D005544 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Forecasting |
| type | article |
| title | Hybrid CNN-GRU Model for Real-Time Blood Glucose Forecasting: Enhancing IoT-Based Diabetes Management with AI |
| biblio.issue | 23 |
| biblio.volume | 24 |
| biblio.last_page | 7670 |
| biblio.first_page | 7670 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9923999905586243 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T11196 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9775000214576721 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Non-Invasive Vital Sign Monitoring |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9733999967575073 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5486708879470825 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776217022 |
| concepts[1].level | 4 |
| concepts[1].score | 0.5283395051956177 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1100933 |
| concepts[1].display_name | Diabetes management |
| concepts[2].id | https://openalex.org/C81860439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5201162099838257 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[2].display_name | Internet of Things |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4974110424518585 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C555293320 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48740842938423157 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[4].display_name | Diabetes mellitus |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3891753554344177 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C79403827 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34813183546066284 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[6].display_name | Real-time computing |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.32413721084594727 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C149635348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2883762717247009 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[8].display_name | Embedded system |
| concepts[9].id | https://openalex.org/C2777180221 |
| concepts[9].level | 3 |
| concepts[9].score | 0.14566990733146667 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3025883 |
| concepts[9].display_name | Type 2 diabetes |
| concepts[10].id | https://openalex.org/C134018914 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09267488121986389 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[10].display_name | Endocrinology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5486708879470825 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/diabetes-management |
| keywords[1].score | 0.5283395051956177 |
| keywords[1].display_name | Diabetes management |
| keywords[2].id | https://openalex.org/keywords/internet-of-things |
| keywords[2].score | 0.5201162099838257 |
| keywords[2].display_name | Internet of Things |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4974110424518585 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[4].score | 0.48740842938423157 |
| keywords[4].display_name | Diabetes mellitus |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.3891753554344177 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/real-time-computing |
| keywords[6].score | 0.34813183546066284 |
| keywords[6].display_name | Real-time computing |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.32413721084594727 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/embedded-system |
| keywords[8].score | 0.2883762717247009 |
| keywords[8].display_name | Embedded system |
| keywords[9].id | https://openalex.org/keywords/type-2-diabetes |
| keywords[9].score | 0.14566990733146667 |
| keywords[9].display_name | Type 2 diabetes |
| keywords[10].id | https://openalex.org/keywords/endocrinology |
| keywords[10].score | 0.09267488121986389 |
| keywords[10].display_name | Endocrinology |
| language | en |
| locations[0].id | doi:10.3390/s24237670 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s24237670 |
| locations[1].id | pmid:39686207 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39686207 |
| locations[2].id | pmh:oai:doaj.org/article:6e51e59db8bb4264b746dcc15059776e |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 24, Iss 23, p 7670 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/6e51e59db8bb4264b746dcc15059776e |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5020065096 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6395-4723 |
| authorships[0].author.display_name | Reem Alkanhel |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I106778892 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I106778892 |
| authorships[0].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Reem Ibrahim Alkanhel |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5108016584 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6184-7107 |
| authorships[1].author.display_name | Hager Saleh |
| authorships[1].countries | IE |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Computers and Artificial Intelligence, Hurghada University, Hurghada 84511, Egypt |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I188760350 |
| authorships[1].affiliations[1].raw_affiliation_string | Insight SFI Research Centre for Data Analytics, School of Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I18452974, https://openalex.org/I4387152698 |
| authorships[1].affiliations[2].raw_affiliation_string | Research Development, Atlantic Technological University, Letterkenny, H91 AH5K Donegal, Ireland |
| authorships[1].institutions[0].id | https://openalex.org/I4387152698 |
| authorships[1].institutions[0].ror | https://ror.org/0458dap48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4387152698 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Atlantic Technological University |
| authorships[1].institutions[1].id | https://openalex.org/I18452974 |
| authorships[1].institutions[1].ror | https://ror.org/04ps1tq95 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I18452974 |
| authorships[1].institutions[1].country_code | IE |
| authorships[1].institutions[1].display_name | Letterkenny Institute of Technology |
| authorships[1].institutions[2].id | https://openalex.org/I188760350 |
| authorships[1].institutions[2].ror | https://ror.org/03bea9k73 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I188760350 |
| authorships[1].institutions[2].country_code | IE |
| authorships[1].institutions[2].display_name | Ollscoil na Gaillimhe – University of Galway |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hager Saleh |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Faculty of Computers and Artificial Intelligence, Hurghada University, Hurghada 84511, Egypt, Insight SFI Research Centre for Data Analytics, School of Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland, Research Development, Atlantic Technological University, Letterkenny, H91 AH5K Donegal, Ireland |
| authorships[2].author.id | https://openalex.org/A5102737261 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8013-1446 |
| authorships[2].author.display_name | Ahmed Elaraby |
| authorships[2].countries | EG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189575948 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena 83523, Egypt |
| authorships[2].institutions[0].id | https://openalex.org/I189575948 |
| authorships[2].institutions[0].ror | https://ror.org/00jxshx33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189575948 |
| authorships[2].institutions[0].country_code | EG |
| authorships[2].institutions[0].display_name | South Valley University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ahmed Elaraby |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena 83523, Egypt |
| authorships[3].author.id | https://openalex.org/A5089459930 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0250-6369 |
| authorships[3].author.display_name | Saleh Alharbi |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I206935292 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Science and Humanities in Dawadmi, Shaqra University, Shaqra 11961, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I206935292 |
| authorships[3].institutions[0].ror | https://ror.org/05hawb687 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I206935292 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Shaqra University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Saleh Alharbi |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Computer Science, College of Science and Humanities in Dawadmi, Shaqra University, Shaqra 11961, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5076083494 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2571-1848 |
| authorships[4].author.display_name | Hela Elmannai |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I106778892 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I106778892 |
| authorships[4].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hela Elmannai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5113297002 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3656-6829 |
| authorships[5].author.display_name | Saad Alaklabi |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I206935292 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Science and Humanities in Dawadmi, Shaqra University, Shaqra 11961, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I206935292 |
| authorships[5].institutions[0].ror | https://ror.org/05hawb687 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I206935292 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Shaqra University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Saad Alaklabi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, College of Science and Humanities in Dawadmi, Shaqra University, Shaqra 11961, Saudi Arabia |
| authorships[6].author.id | https://openalex.org/A5012786887 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2857-6979 |
| authorships[6].author.display_name | Saeed Hamood Alsamhi |
| authorships[6].countries | IE, KR, YE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I78137547 |
| authorships[6].affiliations[0].raw_affiliation_string | Faculty of Engineering, IBB University, Ibb 70270, Yemen |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I197347611 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, College of Informatics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I188760350 |
| authorships[6].affiliations[2].raw_affiliation_string | Insight SFI Research Centre for Data Analytics, School of Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland |
| authorships[6].institutions[0].id | https://openalex.org/I188760350 |
| authorships[6].institutions[0].ror | https://ror.org/03bea9k73 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I188760350 |
| authorships[6].institutions[0].country_code | IE |
| authorships[6].institutions[0].display_name | Ollscoil na Gaillimhe – University of Galway |
| authorships[6].institutions[1].id | https://openalex.org/I197347611 |
| authorships[6].institutions[1].ror | https://ror.org/047dqcg40 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I197347611 |
| authorships[6].institutions[1].country_code | KR |
| authorships[6].institutions[1].display_name | Korea University |
| authorships[6].institutions[2].id | https://openalex.org/I78137547 |
| authorships[6].institutions[2].ror | https://ror.org/00fhcxc56 |
| authorships[6].institutions[2].type | education |
| authorships[6].institutions[2].lineage | https://openalex.org/I78137547 |
| authorships[6].institutions[2].country_code | YE |
| authorships[6].institutions[2].display_name | Ibb University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Saeed Hamood Alsamhi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Science and Engineering, College of Informatics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea, Faculty of Engineering, IBB University, Ibb 70270, Yemen, Insight SFI Research Centre for Data Analytics, School of Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland |
| authorships[7].author.id | https://openalex.org/A5033536879 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2520-4005 |
| authorships[7].author.display_name | Sherif Mostafa |
| authorships[7].affiliations[0].raw_affiliation_string | Faculty of Computers and Artificial Intelligence, Hurghada University, Hurghada 84511, Egypt |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Sherif Mostafa |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Faculty of Computers and Artificial Intelligence, Hurghada University, Hurghada 84511, Egypt |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/s24237670 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid CNN-GRU Model for Real-Time Blood Glucose Forecasting: Enhancing IoT-Based Diabetes Management with AI |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9923999905586243 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W4245926026, https://openalex.org/W4311097251, https://openalex.org/W2586548817, https://openalex.org/W2625093826, https://openalex.org/W4200598720, https://openalex.org/W2921026492, https://openalex.org/W4247463117, https://openalex.org/W4361251261, https://openalex.org/W2131057798, https://openalex.org/W4285141181 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/s24237670 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s24237670 |
| primary_location.id | doi:10.3390/s24237670 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s24237670 |
| publication_date | 2024-11-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2887622249, https://openalex.org/W4281627596, https://openalex.org/W2963123914, https://openalex.org/W2807893746, https://openalex.org/W4205910918, https://openalex.org/W6753964962, https://openalex.org/W3092966823, https://openalex.org/W2807933107, https://openalex.org/W2803803993, https://openalex.org/W6755786189, https://openalex.org/W4295914151, https://openalex.org/W3183804512, https://openalex.org/W3210902789, https://openalex.org/W4213415292, https://openalex.org/W3016173377, https://openalex.org/W2993720025, https://openalex.org/W3037908389, https://openalex.org/W3090973933, https://openalex.org/W3149504031, https://openalex.org/W3090725796, https://openalex.org/W3190524507, https://openalex.org/W3139241726, https://openalex.org/W4205203504, https://openalex.org/W2965097915, https://openalex.org/W4210885060, https://openalex.org/W2991092620, https://openalex.org/W2978273980, https://openalex.org/W3083204285, https://openalex.org/W2944851425, https://openalex.org/W2963608065, https://openalex.org/W6638824847, https://openalex.org/W2919841204, https://openalex.org/W6766576792, https://openalex.org/W4238746485, https://openalex.org/W3085991507, https://openalex.org/W2967663220, https://openalex.org/W4225740406, https://openalex.org/W2898991342 |
| referenced_works_count | 38 |
| abstract_inverted_index.1 | 130 |
| abstract_inverted_index.a | 10, 60, 126 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.be | 39, 80 |
| abstract_inverted_index.by | 96 |
| abstract_inverted_index.in | 175 |
| abstract_inverted_index.is | 9, 137 |
| abstract_inverted_index.of | 85, 141 |
| abstract_inverted_index.on | 68, 101 |
| abstract_inverted_index.to | 30, 121, 139, 169 |
| abstract_inverted_index.we | 58 |
| abstract_inverted_index.BGL | 46, 54, 173 |
| abstract_inverted_index.CNN | 115 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.GRU | 106, 150 |
| abstract_inverted_index.The | 152 |
| abstract_inverted_index.and | 41, 73, 94, 111, 149 |
| abstract_inverted_index.can | 38, 79 |
| abstract_inverted_index.how | 17 |
| abstract_inverted_index.its | 167 |
| abstract_inverted_index.the | 14, 18, 83, 105, 114, 118, 133, 142, 156, 163 |
| abstract_inverted_index.CNN, | 148 |
| abstract_inverted_index.Long | 144 |
| abstract_inverted_index.Many | 43 |
| abstract_inverted_index.body | 19 |
| abstract_inverted_index.data | 99, 120 |
| abstract_inverted_index.deep | 63 |
| abstract_inverted_index.edge | 102 |
| abstract_inverted_index.have | 29 |
| abstract_inverted_index.into | 82 |
| abstract_inverted_index.many | 55 |
| abstract_inverted_index.show | 154 |
| abstract_inverted_index.than | 162 |
| abstract_inverted_index.that | 140, 155 |
| abstract_inverted_index.type | 129 |
| abstract_inverted_index.with | 2 |
| abstract_inverted_index.(BGL) | 8 |
| abstract_inverted_index.Gated | 69 |
| abstract_inverted_index.Units | 71 |
| abstract_inverted_index.Using | 125 |
| abstract_inverted_index.While | 104 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.blood | 5, 34 |
| abstract_inverted_index.check | 32 |
| abstract_inverted_index.food, | 21 |
| abstract_inverted_index.issue | 12 |
| abstract_inverted_index.layer | 107, 116 |
| abstract_inverted_index.level | 7 |
| abstract_inverted_index.makes | 23 |
| abstract_inverted_index.model | 65, 159 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.since | 13 |
| abstract_inverted_index.steps | 56 |
| abstract_inverted_index.sugar | 35 |
| abstract_inverted_index.their | 33 |
| abstract_inverted_index.which | 22, 37, 78 |
| abstract_inverted_index.(GRUs) | 72 |
| abstract_inverted_index.Memory | 146 |
| abstract_inverted_index.Neural | 75 |
| abstract_inverted_index.Things | 86 |
| abstract_inverted_index.affect | 45 |
| abstract_inverted_index.ahead, | 57 |
| abstract_inverted_index.better | 161 |
| abstract_inverted_index.hybrid | 62, 134, 157 |
| abstract_inverted_index.making | 48 |
| abstract_inverted_index.people | 1 |
| abstract_inverted_index.single | 164 |
| abstract_inverted_index.(CNNs), | 77 |
| abstract_inverted_index.(LSTM), | 147 |
| abstract_inverted_index.CNN-GRU | 158 |
| abstract_inverted_index.affects | 16 |
| abstract_inverted_index.careful | 24 |
| abstract_inverted_index.disease | 15 |
| abstract_inverted_index.extract | 122 |
| abstract_inverted_index.glucose | 6 |
| abstract_inverted_index.improve | 171 |
| abstract_inverted_index.insulin | 25 |
| abstract_inverted_index.levels, | 36 |
| abstract_inverted_index.models, | 165 |
| abstract_inverted_index.models. | 151 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.records | 108 |
| abstract_inverted_index.Internet | 84 |
| abstract_inverted_index.Networks | 76 |
| abstract_inverted_index.Patients | 28 |
| abstract_inverted_index.accuracy | 93 |
| abstract_inverted_index.accurate | 49 |
| abstract_inverted_index.allowing | 97 |
| abstract_inverted_index.analyzes | 117 |
| abstract_inverted_index.changes, | 47 |
| abstract_inverted_index.compared | 138 |
| abstract_inverted_index.dataset, | 132 |
| abstract_inverted_index.devices. | 103 |
| abstract_inverted_index.diabetes | 88, 131, 177 |
| abstract_inverted_index.findings | 153 |
| abstract_inverted_index.incoming | 119 |
| abstract_inverted_index.learning | 64 |
| abstract_inverted_index.manually | 31 |
| abstract_inverted_index.performs | 160 |
| abstract_inverted_index.publicly | 127 |
| abstract_inverted_index.sequence | 112 |
| abstract_inverted_index.systems, | 90 |
| abstract_inverted_index.systems. | 179 |
| abstract_inverted_index.temporal | 109 |
| abstract_inverted_index.IoT-based | 176 |
| abstract_inverted_index.Recurrent | 70 |
| abstract_inverted_index.diabetes, | 3 |
| abstract_inverted_index.features. | 124 |
| abstract_inverted_index.framework | 66 |
| abstract_inverted_index.improving | 91 |
| abstract_inverted_index.laborious | 40 |
| abstract_inverted_index.model’s | 135 |
| abstract_inverted_index.potential | 168 |
| abstract_inverted_index.real-time | 98, 172 |
| abstract_inverted_index.variables | 44 |
| abstract_inverted_index.Short-Term | 145 |
| abstract_inverted_index.accessible | 128 |
| abstract_inverted_index.anticipate | 53 |
| abstract_inverted_index.indicating | 166 |
| abstract_inverted_index.integrated | 81 |
| abstract_inverted_index.management | 89, 178 |
| abstract_inverted_index.necessary. | 27 |
| abstract_inverted_index.prediction | 50, 92 |
| abstract_inverted_index.processing | 100 |
| abstract_inverted_index.regulation | 26 |
| abstract_inverted_index.standalone | 143 |
| abstract_inverted_index.timeliness | 95 |
| abstract_inverted_index.controlling | 4 |
| abstract_inverted_index.forecasting | 174 |
| abstract_inverted_index.inaccurate. | 42 |
| abstract_inverted_index.metabolizes | 20 |
| abstract_inverted_index.performance | 136 |
| abstract_inverted_index.significant | 11, 123 |
| abstract_inverted_index.challenging. | 51 |
| abstract_inverted_index.information, | 113 |
| abstract_inverted_index.(IoT)-enabled | 87 |
| abstract_inverted_index.Convolutional | 74 |
| abstract_inverted_index.relationships | 110 |
| abstract_inverted_index.significantly | 170 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5089459930, https://openalex.org/A5108016584 |
| countries_distinct_count | 5 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I18452974, https://openalex.org/I188760350, https://openalex.org/I206935292, https://openalex.org/I4387152698 |
| citation_normalized_percentile.value | 0.95334441 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |