Hybrid Computerized Method for Environmental Sound Classification Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/access.2020.3006082
Classification of environmental sounds plays a key role in security, investigation, robotics since the study of the sounds present in a specific environment can allow to get significant insights. Lack of standardized methods for an automatic and effective environmental sound classification (ESC) creates a need to be urgently satisfied. As a response to this limitation, in this paper, a hybrid model for automatic and accurate classification of environmental sounds is proposed. Optimum allocation sampling (OAS) is used to elicit the informative samples from each class. The representative samples obtained by OAS are turned into the spectrogram containing their time-frequency-amplitude representation by using a short-time Fourier transform (STFT). The spectrogram is then given as an input to pre-trained AlexNet and Visual Geometry Group (VGG)-16 networks. Multiple deep features are extracted using the pre-trained networks and classified by using multiple classification techniques namely decision tree (fine, medium, coarse kernel), k-nearest neighbor (fine, medium, cosine, cubic, coarse and weighted kernel), support vector machine, linear discriminant analysis, bagged tree and softmax classifiers. The ESC-10, a ten-class environmental sound dataset, is used for the evaluation of the methodology. An accuracy of 90.1%, 95.8%, 94.7%, 87.9%, 95.6%, and 92.4% is obtained with a decision tree, k-neared neighbor, support vector machine, linear discriminant analysis, bagged tree and softmax classifier respectively. The proposed method proved to be robust, effective, and promising in comparison with other existing state-of-the-art techniques, using the same dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2020.3006082
- https://ieeexplore.ieee.org/ielx7/6287639/8948470/09129696.pdf
- OA Status
- gold
- Cited By
- 45
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3039519447
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3039519447Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2020.3006082Digital Object Identifier
- Title
-
Hybrid Computerized Method for Environmental Sound ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Silvia Liberata Ullo, Smith K. Khare, Varun Bajaj, G. R. SinhaList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2020.3006082Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09129696.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09129696.pdfDirect OA link when available
- Concepts
-
Softmax function, Spectrogram, Artificial intelligence, Computer science, Pattern recognition (psychology), Support vector machine, Decision tree, Linear discriminant analysis, Short-time Fourier transform, Classifier (UML), Kernel (algebra), Feature extraction, Machine learning, Fourier transform, Artificial neural network, Mathematics, Fourier analysis, Mathematical analysis, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
45Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 8, 2023: 7, 2022: 15, 2021: 6Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3039519447 |
|---|---|
| doi | https://doi.org/10.1109/access.2020.3006082 |
| ids.doi | https://doi.org/10.1109/access.2020.3006082 |
| ids.mag | 3039519447 |
| ids.openalex | https://openalex.org/W3039519447 |
| fwci | 4.7288217 |
| type | article |
| title | Hybrid Computerized Method for Environmental Sound Classification |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 124065 |
| biblio.first_page | 124055 |
| topics[0].id | https://openalex.org/T11309 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Music and Audio Processing |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T11665 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9918000102043152 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1309 |
| topics[2].subfield.display_name | Developmental Biology |
| topics[2].display_name | Animal Vocal Communication and Behavior |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C188441871 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8175631165504456 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7554146 |
| concepts[0].display_name | Softmax function |
| concepts[1].id | https://openalex.org/C45273575 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7424131631851196 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q578970 |
| concepts[1].display_name | Spectrogram |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7292524576187134 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7247257232666016 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.7059687376022339 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6575238108634949 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C84525736 |
| concepts[6].level | 2 |
| concepts[6].score | 0.636543333530426 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[6].display_name | Decision tree |
| concepts[7].id | https://openalex.org/C69738355 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5653186440467834 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[7].display_name | Linear discriminant analysis |
| concepts[8].id | https://openalex.org/C166386157 |
| concepts[8].level | 4 |
| concepts[8].score | 0.5369858741760254 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1477735 |
| concepts[8].display_name | Short-time Fourier transform |
| concepts[9].id | https://openalex.org/C95623464 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5226561427116394 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[9].display_name | Classifier (UML) |
| concepts[10].id | https://openalex.org/C74193536 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43682968616485596 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[10].display_name | Kernel (algebra) |
| concepts[11].id | https://openalex.org/C52622490 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4124924838542938 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[11].display_name | Feature extraction |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3368406593799591 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C102519508 |
| concepts[13].level | 2 |
| concepts[13].score | 0.315123975276947 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q6520159 |
| concepts[13].display_name | Fourier transform |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2609654664993286 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.21580535173416138 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C203024314 |
| concepts[16].level | 3 |
| concepts[16].score | 0.08608922362327576 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1365258 |
| concepts[16].display_name | Fourier analysis |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/softmax-function |
| keywords[0].score | 0.8175631165504456 |
| keywords[0].display_name | Softmax function |
| keywords[1].id | https://openalex.org/keywords/spectrogram |
| keywords[1].score | 0.7424131631851196 |
| keywords[1].display_name | Spectrogram |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7292524576187134 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7247257232666016 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.7059687376022339 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.6575238108634949 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/decision-tree |
| keywords[6].score | 0.636543333530426 |
| keywords[6].display_name | Decision tree |
| keywords[7].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[7].score | 0.5653186440467834 |
| keywords[7].display_name | Linear discriminant analysis |
| keywords[8].id | https://openalex.org/keywords/short-time-fourier-transform |
| keywords[8].score | 0.5369858741760254 |
| keywords[8].display_name | Short-time Fourier transform |
| keywords[9].id | https://openalex.org/keywords/classifier |
| keywords[9].score | 0.5226561427116394 |
| keywords[9].display_name | Classifier (UML) |
| keywords[10].id | https://openalex.org/keywords/kernel |
| keywords[10].score | 0.43682968616485596 |
| keywords[10].display_name | Kernel (algebra) |
| keywords[11].id | https://openalex.org/keywords/feature-extraction |
| keywords[11].score | 0.4124924838542938 |
| keywords[11].display_name | Feature extraction |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3368406593799591 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/fourier-transform |
| keywords[13].score | 0.315123975276947 |
| keywords[13].display_name | Fourier transform |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.2609654664993286 |
| keywords[14].display_name | Artificial neural network |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.21580535173416138 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/fourier-analysis |
| keywords[16].score | 0.08608922362327576 |
| keywords[16].display_name | Fourier analysis |
| language | en |
| locations[0].id | doi:10.1109/access.2020.3006082 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09129696.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2020.3006082 |
| locations[1].id | pmh:oai:doaj.org/article:2c435412f80c416cb69926af23188bb8 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 8, Pp 124055-124065 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/2c435412f80c416cb69926af23188bb8 |
| locations[2].id | pmh:oai:zenodo.org:140825 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.openaccessrepository.it/record/140825 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5044114684 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6294-0581 |
| authorships[0].author.display_name | Silvia Liberata Ullo |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16337185 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Engineering, Universita Degli Studi Del Sannio, Benevento, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I16337185 |
| authorships[0].institutions[0].ror | https://ror.org/04vc81p87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16337185 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Sannio |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Silvia Liberata Ullo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Engineering, Universita Degli Studi Del Sannio, Benevento, Italy |
| authorships[1].author.id | https://openalex.org/A5008824968 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8365-1092 |
| authorships[1].author.display_name | Smith K. Khare |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I207223250 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronics and Communication, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India |
| authorships[1].institutions[0].id | https://openalex.org/I207223250 |
| authorships[1].institutions[0].ror | https://ror.org/00gmd7q80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I207223250 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Information Technology Design and Manufacturing Jabalpur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Smith K. Khare |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronics and Communication, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India |
| authorships[2].author.id | https://openalex.org/A5059215546 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8721-1219 |
| authorships[2].author.display_name | Varun Bajaj |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I207223250 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electronics and Communication, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India |
| authorships[2].institutions[0].id | https://openalex.org/I207223250 |
| authorships[2].institutions[0].ror | https://ror.org/00gmd7q80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I207223250 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Information Technology Design and Manufacturing Jabalpur |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Varun Bajaj |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electronics and Communication, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India |
| authorships[3].author.id | https://openalex.org/A5085796013 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2384-4591 |
| authorships[3].author.display_name | G. R. Sinha |
| authorships[3].countries | MM |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3132516330 |
| authorships[3].affiliations[0].raw_affiliation_string | Myanmar Institute of Information Technology (MIIT), Mandalay, Myanmar |
| authorships[3].institutions[0].id | https://openalex.org/I3132516330 |
| authorships[3].institutions[0].ror | https://ror.org/038smxt70 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3132516330 |
| authorships[3].institutions[0].country_code | MM |
| authorships[3].institutions[0].display_name | Myanmar Institute of Information Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | G. R. Sinha |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Myanmar Institute of Information Technology (MIIT), Mandalay, Myanmar |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09129696.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-07-10T00:00:00 |
| display_name | Hybrid Computerized Method for Environmental Sound Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11309 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Music and Audio Processing |
| related_works | https://openalex.org/W2120540196, https://openalex.org/W3095343173, https://openalex.org/W2381036744, https://openalex.org/W2288135719, https://openalex.org/W2323749021, https://openalex.org/W2533590149, https://openalex.org/W2901989338, https://openalex.org/W82005754, https://openalex.org/W2334448276, https://openalex.org/W3210733254 |
| cited_by_count | 45 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 15 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 6 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/access.2020.3006082 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09129696.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2020.3006082 |
| primary_location.id | doi:10.1109/access.2020.3006082 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09129696.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2020.3006082 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W6623737539, https://openalex.org/W2943857514, https://openalex.org/W2984991728, https://openalex.org/W3014613513, https://openalex.org/W3005422292, https://openalex.org/W2513386338, https://openalex.org/W2081434183, https://openalex.org/W6767186461, https://openalex.org/W2799802247, https://openalex.org/W2627865373, https://openalex.org/W2751841560, https://openalex.org/W2963041956, https://openalex.org/W6755099081, https://openalex.org/W2593451766, https://openalex.org/W1561603276, https://openalex.org/W2088850873, https://openalex.org/W3007758975, https://openalex.org/W3013058411, https://openalex.org/W2919115771, https://openalex.org/W2972485130, https://openalex.org/W2937047963, https://openalex.org/W6749290080, https://openalex.org/W1972567154, https://openalex.org/W2944884576, https://openalex.org/W2742942819, https://openalex.org/W2807069441, https://openalex.org/W1487458526, https://openalex.org/W2922073138, https://openalex.org/W2052666245, https://openalex.org/W2509065397, https://openalex.org/W2289208053, https://openalex.org/W2765136154, https://openalex.org/W2114492997, https://openalex.org/W4236340082, https://openalex.org/W2371638596, https://openalex.org/W2230508580, https://openalex.org/W4298168912, https://openalex.org/W2970956333, https://openalex.org/W3098357269 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 5, 20, 43, 50, 58, 102, 170, 196 |
| abstract_inverted_index.An | 183 |
| abstract_inverted_index.As | 49 |
| abstract_inverted_index.an | 34, 113 |
| abstract_inverted_index.as | 112 |
| abstract_inverted_index.be | 46, 218 |
| abstract_inverted_index.by | 89, 100, 135 |
| abstract_inverted_index.in | 8, 19, 55, 223 |
| abstract_inverted_index.is | 69, 75, 109, 175, 193 |
| abstract_inverted_index.of | 1, 15, 30, 66, 180, 185 |
| abstract_inverted_index.to | 25, 45, 52, 77, 115, 217 |
| abstract_inverted_index.OAS | 90 |
| abstract_inverted_index.The | 85, 107, 168, 213 |
| abstract_inverted_index.and | 36, 63, 118, 133, 154, 165, 191, 209, 221 |
| abstract_inverted_index.are | 91, 127 |
| abstract_inverted_index.can | 23 |
| abstract_inverted_index.for | 33, 61, 177 |
| abstract_inverted_index.get | 26 |
| abstract_inverted_index.key | 6 |
| abstract_inverted_index.the | 13, 16, 79, 94, 130, 178, 181, 231 |
| abstract_inverted_index.Lack | 29 |
| abstract_inverted_index.deep | 125 |
| abstract_inverted_index.each | 83 |
| abstract_inverted_index.from | 82 |
| abstract_inverted_index.into | 93 |
| abstract_inverted_index.need | 44 |
| abstract_inverted_index.role | 7 |
| abstract_inverted_index.same | 232 |
| abstract_inverted_index.then | 110 |
| abstract_inverted_index.this | 53, 56 |
| abstract_inverted_index.tree | 142, 164, 208 |
| abstract_inverted_index.used | 76, 176 |
| abstract_inverted_index.with | 195, 225 |
| abstract_inverted_index.(ESC) | 41 |
| abstract_inverted_index.(OAS) | 74 |
| abstract_inverted_index.92.4% | 192 |
| abstract_inverted_index.Group | 121 |
| abstract_inverted_index.allow | 24 |
| abstract_inverted_index.given | 111 |
| abstract_inverted_index.input | 114 |
| abstract_inverted_index.model | 60 |
| abstract_inverted_index.other | 226 |
| abstract_inverted_index.plays | 4 |
| abstract_inverted_index.since | 12 |
| abstract_inverted_index.sound | 39, 173 |
| abstract_inverted_index.study | 14 |
| abstract_inverted_index.their | 97 |
| abstract_inverted_index.tree, | 198 |
| abstract_inverted_index.using | 101, 129, 136, 230 |
| abstract_inverted_index.(fine, | 143, 149 |
| abstract_inverted_index.87.9%, | 189 |
| abstract_inverted_index.90.1%, | 186 |
| abstract_inverted_index.94.7%, | 188 |
| abstract_inverted_index.95.6%, | 190 |
| abstract_inverted_index.95.8%, | 187 |
| abstract_inverted_index.Visual | 119 |
| abstract_inverted_index.bagged | 163, 207 |
| abstract_inverted_index.class. | 84 |
| abstract_inverted_index.coarse | 145, 153 |
| abstract_inverted_index.cubic, | 152 |
| abstract_inverted_index.elicit | 78 |
| abstract_inverted_index.hybrid | 59 |
| abstract_inverted_index.linear | 160, 204 |
| abstract_inverted_index.method | 215 |
| abstract_inverted_index.namely | 140 |
| abstract_inverted_index.paper, | 57 |
| abstract_inverted_index.proved | 216 |
| abstract_inverted_index.sounds | 3, 17, 68 |
| abstract_inverted_index.turned | 92 |
| abstract_inverted_index.vector | 158, 202 |
| abstract_inverted_index.(STFT). | 106 |
| abstract_inverted_index.AlexNet | 117 |
| abstract_inverted_index.ESC-10, | 169 |
| abstract_inverted_index.Fourier | 104 |
| abstract_inverted_index.Optimum | 71 |
| abstract_inverted_index.cosine, | 151 |
| abstract_inverted_index.creates | 42 |
| abstract_inverted_index.medium, | 144, 150 |
| abstract_inverted_index.methods | 32 |
| abstract_inverted_index.present | 18 |
| abstract_inverted_index.robust, | 219 |
| abstract_inverted_index.samples | 81, 87 |
| abstract_inverted_index.softmax | 166, 210 |
| abstract_inverted_index.support | 157, 201 |
| abstract_inverted_index.(VGG)-16 | 122 |
| abstract_inverted_index.Geometry | 120 |
| abstract_inverted_index.Multiple | 124 |
| abstract_inverted_index.accuracy | 184 |
| abstract_inverted_index.accurate | 64 |
| abstract_inverted_index.dataset, | 174 |
| abstract_inverted_index.dataset. | 233 |
| abstract_inverted_index.decision | 141, 197 |
| abstract_inverted_index.existing | 227 |
| abstract_inverted_index.features | 126 |
| abstract_inverted_index.k-neared | 199 |
| abstract_inverted_index.kernel), | 146, 156 |
| abstract_inverted_index.machine, | 159, 203 |
| abstract_inverted_index.multiple | 137 |
| abstract_inverted_index.neighbor | 148 |
| abstract_inverted_index.networks | 132 |
| abstract_inverted_index.obtained | 88, 194 |
| abstract_inverted_index.proposed | 214 |
| abstract_inverted_index.response | 51 |
| abstract_inverted_index.robotics | 11 |
| abstract_inverted_index.sampling | 73 |
| abstract_inverted_index.specific | 21 |
| abstract_inverted_index.urgently | 47 |
| abstract_inverted_index.weighted | 155 |
| abstract_inverted_index.analysis, | 162, 206 |
| abstract_inverted_index.automatic | 35, 62 |
| abstract_inverted_index.effective | 37 |
| abstract_inverted_index.extracted | 128 |
| abstract_inverted_index.insights. | 28 |
| abstract_inverted_index.k-nearest | 147 |
| abstract_inverted_index.neighbor, | 200 |
| abstract_inverted_index.networks. | 123 |
| abstract_inverted_index.promising | 222 |
| abstract_inverted_index.proposed. | 70 |
| abstract_inverted_index.security, | 9 |
| abstract_inverted_index.ten-class | 171 |
| abstract_inverted_index.transform | 105 |
| abstract_inverted_index.allocation | 72 |
| abstract_inverted_index.classified | 134 |
| abstract_inverted_index.classifier | 211 |
| abstract_inverted_index.comparison | 224 |
| abstract_inverted_index.containing | 96 |
| abstract_inverted_index.effective, | 220 |
| abstract_inverted_index.evaluation | 179 |
| abstract_inverted_index.satisfied. | 48 |
| abstract_inverted_index.short-time | 103 |
| abstract_inverted_index.techniques | 139 |
| abstract_inverted_index.environment | 22 |
| abstract_inverted_index.informative | 80 |
| abstract_inverted_index.limitation, | 54 |
| abstract_inverted_index.pre-trained | 116, 131 |
| abstract_inverted_index.significant | 27 |
| abstract_inverted_index.spectrogram | 95, 108 |
| abstract_inverted_index.techniques, | 229 |
| abstract_inverted_index.classifiers. | 167 |
| abstract_inverted_index.discriminant | 161, 205 |
| abstract_inverted_index.methodology. | 182 |
| abstract_inverted_index.standardized | 31 |
| abstract_inverted_index.environmental | 2, 38, 67, 172 |
| abstract_inverted_index.respectively. | 212 |
| abstract_inverted_index.Classification | 0 |
| abstract_inverted_index.classification | 40, 65, 138 |
| abstract_inverted_index.investigation, | 10 |
| abstract_inverted_index.representation | 99 |
| abstract_inverted_index.representative | 86 |
| abstract_inverted_index.state-of-the-art | 228 |
| abstract_inverted_index.time-frequency-amplitude | 98 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.96205912 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |