Hybrid Convolutional Transformer with Dynamic Prompting for Adaptive Image Restoration Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/math13203329
High-quality image restoration (IR) is a fundamental task in computer vision, aiming to recover a clear image from its degraded version. Prevailing methods typically employ a static inference pipeline, neglecting the spatial variability of image content and degradation, which makes it difficult for them to adaptively handle complex and diverse restoration scenarios. To address this issue, we propose a novel adaptive image restoration framework named Hybrid Convolutional Transformer with Dynamic Prompting (HCTDP). Our approach introduces two key architectural innovations: a Spatially Aware Dynamic Prompt Head Attention (SADPHA) module, which performs fine-grained local restoration by generating spatially variant prompts through real-time analysis of image content and a Gated Skip-Connection (GSC) module that refines multi-scale feature flow using efficient channel attention. To guide the network in generating more visually plausible results, the framework is optimized with a hybrid objective function that combines a pixel-wise L1 loss and a feature-level perceptual loss. Extensive experiments on multiple public benchmarks, including image deraining, dehazing, and denoising, demonstrate that our proposed HCTDP exhibits superior performance in both quantitative and qualitative evaluations, validating the effectiveness of the adaptive restoration framework while utilizing fewer parameters than key competitors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math13203329
- https://www.mdpi.com/2227-7390/13/20/3329/pdf?version=1760935052
- OA Status
- gold
- References
- 19
- OpenAlex ID
- https://openalex.org/W4415349694
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415349694Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math13203329Digital Object Identifier
- Title
-
Hybrid Convolutional Transformer with Dynamic Prompting for Adaptive Image RestorationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-19Full publication date if available
- Authors
-
Jinmei Zhang, Guorong Chen, Junliang Yang, Qingru Zhang, Shaofeng Liu, Weijie ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/math13203329Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/13/20/3329/pdf?version=1760935052Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/13/20/3329/pdf?version=1760935052Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415349694 |
|---|---|
| doi | https://doi.org/10.3390/math13203329 |
| ids.doi | https://doi.org/10.3390/math13203329 |
| ids.openalex | https://openalex.org/W4415349694 |
| fwci | 0.0 |
| type | article |
| title | Hybrid Convolutional Transformer with Dynamic Prompting for Adaptive Image Restoration |
| biblio.issue | 20 |
| biblio.volume | 13 |
| biblio.last_page | 3329 |
| biblio.first_page | 3329 |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9991999864578247 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| language | en |
| locations[0].id | doi:10.3390/math13203329 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/13/20/3329/pdf?version=1760935052 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math13203329 |
| locations[1].id | pmh:oai:doaj.org/article:a594f880c6874c4986060be9de3d759f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 13, Iss 20, p 3329 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/a594f880c6874c4986060be9de3d759f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5088883278 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jinmei Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I168337820 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[0].institutions[0].id | https://openalex.org/I168337820 |
| authorships[0].institutions[0].ror | https://ror.org/03n3v6d52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I168337820 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chongqing University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinmei Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[1].author.id | https://openalex.org/A5101543487 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-7186-7417 |
| authorships[1].author.display_name | Guorong Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Chongqing Intelligent Mathematics and Autonomous Intelligence Research Institute, Chongqing 401331, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I168337820 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[1].institutions[0].id | https://openalex.org/I168337820 |
| authorships[1].institutions[0].ror | https://ror.org/03n3v6d52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I168337820 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chongqing University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guorong Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Chongqing Intelligent Mathematics and Autonomous Intelligence Research Institute, Chongqing 401331, China, Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[2].author.id | https://openalex.org/A5069811825 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5553-0186 |
| authorships[2].author.display_name | Junliang Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 401331, China |
| authorships[2].institutions[0].id | https://openalex.org/I158842170 |
| authorships[2].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chongqing University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Junliang Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 401331, China |
| authorships[3].author.id | https://openalex.org/A5059657111 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Qingru Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I168337820 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[3].institutions[0].id | https://openalex.org/I168337820 |
| authorships[3].institutions[0].ror | https://ror.org/03n3v6d52 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I168337820 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chongqing University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qingru Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[4].author.id | https://openalex.org/A5101491446 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Shaofeng Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I168337820 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[4].institutions[0].id | https://openalex.org/I168337820 |
| authorships[4].institutions[0].ror | https://ror.org/03n3v6d52 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I168337820 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chongqing University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shaofeng Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[5].author.id | https://openalex.org/A5100366503 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0147-2889 |
| authorships[5].author.display_name | Weijie Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I168337820 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| authorships[5].institutions[0].id | https://openalex.org/I168337820 |
| authorships[5].institutions[0].ror | https://ror.org/03n3v6d52 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I168337820 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chongqing University of Science and Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Weijie Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of School of Computer Science and Engineering (School of Artificial Intelligence), Chongqing University of Science and Technology, Chongqing 401331, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/13/20/3329/pdf?version=1760935052 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-21T00:00:00 |
| display_name | Hybrid Convolutional Transformer with Dynamic Prompting for Adaptive Image Restoration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math13203329 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/13/20/3329/pdf?version=1760935052 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math13203329 |
| primary_location.id | doi:10.3390/math13203329 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/13/20/3329/pdf?version=1760935052 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math13203329 |
| publication_date | 2025-10-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2740982616, https://openalex.org/W2508457857, https://openalex.org/W4312938066, https://openalex.org/W3207918547, https://openalex.org/W4225672218, https://openalex.org/W3034552520, https://openalex.org/W2331128040, https://openalex.org/W1901129140, https://openalex.org/W2798365772, https://openalex.org/W3043547428, https://openalex.org/W4312678820, https://openalex.org/W4312812783, https://openalex.org/W3198377975, https://openalex.org/W4312651322, https://openalex.org/W3048593389, https://openalex.org/W2963928582, https://openalex.org/W2779176852, https://openalex.org/W3170697543, https://openalex.org/W2964212750 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 5, 14, 25, 58, 79, 105, 134, 140, 145 |
| abstract_inverted_index.L1 | 142 |
| abstract_inverted_index.To | 52, 119 |
| abstract_inverted_index.by | 93 |
| abstract_inverted_index.in | 8, 123, 169 |
| abstract_inverted_index.is | 4, 131 |
| abstract_inverted_index.it | 40 |
| abstract_inverted_index.of | 33, 101, 178 |
| abstract_inverted_index.on | 151 |
| abstract_inverted_index.to | 12, 44 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.and | 36, 48, 104, 144, 159, 172 |
| abstract_inverted_index.for | 42 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.key | 76, 188 |
| abstract_inverted_index.our | 163 |
| abstract_inverted_index.the | 30, 121, 129, 176, 179 |
| abstract_inverted_index.two | 75 |
| abstract_inverted_index.(IR) | 3 |
| abstract_inverted_index.Head | 84 |
| abstract_inverted_index.both | 170 |
| abstract_inverted_index.flow | 114 |
| abstract_inverted_index.from | 17 |
| abstract_inverted_index.loss | 143 |
| abstract_inverted_index.more | 125 |
| abstract_inverted_index.task | 7 |
| abstract_inverted_index.than | 187 |
| abstract_inverted_index.that | 110, 138, 162 |
| abstract_inverted_index.them | 43 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.with | 68, 133 |
| abstract_inverted_index.(GSC) | 108 |
| abstract_inverted_index.Aware | 81 |
| abstract_inverted_index.Gated | 106 |
| abstract_inverted_index.HCTDP | 165 |
| abstract_inverted_index.clear | 15 |
| abstract_inverted_index.fewer | 185 |
| abstract_inverted_index.guide | 120 |
| abstract_inverted_index.image | 1, 16, 34, 61, 102, 156 |
| abstract_inverted_index.local | 91 |
| abstract_inverted_index.loss. | 148 |
| abstract_inverted_index.makes | 39 |
| abstract_inverted_index.named | 64 |
| abstract_inverted_index.novel | 59 |
| abstract_inverted_index.using | 115 |
| abstract_inverted_index.which | 38, 88 |
| abstract_inverted_index.while | 183 |
| abstract_inverted_index.Hybrid | 65 |
| abstract_inverted_index.Prompt | 83 |
| abstract_inverted_index.aiming | 11 |
| abstract_inverted_index.employ | 24 |
| abstract_inverted_index.handle | 46 |
| abstract_inverted_index.hybrid | 135 |
| abstract_inverted_index.issue, | 55 |
| abstract_inverted_index.module | 109 |
| abstract_inverted_index.public | 153 |
| abstract_inverted_index.static | 26 |
| abstract_inverted_index.Dynamic | 69, 82 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.channel | 117 |
| abstract_inverted_index.complex | 47 |
| abstract_inverted_index.content | 35, 103 |
| abstract_inverted_index.diverse | 49 |
| abstract_inverted_index.feature | 113 |
| abstract_inverted_index.methods | 22 |
| abstract_inverted_index.module, | 87 |
| abstract_inverted_index.network | 122 |
| abstract_inverted_index.prompts | 97 |
| abstract_inverted_index.propose | 57 |
| abstract_inverted_index.recover | 13 |
| abstract_inverted_index.refines | 111 |
| abstract_inverted_index.spatial | 31 |
| abstract_inverted_index.through | 98 |
| abstract_inverted_index.variant | 96 |
| abstract_inverted_index.vision, | 10 |
| abstract_inverted_index.(HCTDP). | 71 |
| abstract_inverted_index.(SADPHA) | 86 |
| abstract_inverted_index.adaptive | 60, 180 |
| abstract_inverted_index.analysis | 100 |
| abstract_inverted_index.approach | 73 |
| abstract_inverted_index.combines | 139 |
| abstract_inverted_index.computer | 9 |
| abstract_inverted_index.degraded | 19 |
| abstract_inverted_index.exhibits | 166 |
| abstract_inverted_index.function | 137 |
| abstract_inverted_index.multiple | 152 |
| abstract_inverted_index.performs | 89 |
| abstract_inverted_index.proposed | 164 |
| abstract_inverted_index.results, | 128 |
| abstract_inverted_index.superior | 167 |
| abstract_inverted_index.version. | 20 |
| abstract_inverted_index.visually | 126 |
| abstract_inverted_index.Attention | 85 |
| abstract_inverted_index.Extensive | 149 |
| abstract_inverted_index.Prompting | 70 |
| abstract_inverted_index.Spatially | 80 |
| abstract_inverted_index.dehazing, | 158 |
| abstract_inverted_index.difficult | 41 |
| abstract_inverted_index.efficient | 116 |
| abstract_inverted_index.framework | 63, 130, 182 |
| abstract_inverted_index.including | 155 |
| abstract_inverted_index.inference | 27 |
| abstract_inverted_index.objective | 136 |
| abstract_inverted_index.optimized | 132 |
| abstract_inverted_index.pipeline, | 28 |
| abstract_inverted_index.plausible | 127 |
| abstract_inverted_index.real-time | 99 |
| abstract_inverted_index.spatially | 95 |
| abstract_inverted_index.typically | 23 |
| abstract_inverted_index.utilizing | 184 |
| abstract_inverted_index.Prevailing | 21 |
| abstract_inverted_index.adaptively | 45 |
| abstract_inverted_index.attention. | 118 |
| abstract_inverted_index.denoising, | 160 |
| abstract_inverted_index.deraining, | 157 |
| abstract_inverted_index.generating | 94, 124 |
| abstract_inverted_index.introduces | 74 |
| abstract_inverted_index.neglecting | 29 |
| abstract_inverted_index.parameters | 186 |
| abstract_inverted_index.perceptual | 147 |
| abstract_inverted_index.pixel-wise | 141 |
| abstract_inverted_index.scenarios. | 51 |
| abstract_inverted_index.validating | 175 |
| abstract_inverted_index.Transformer | 67 |
| abstract_inverted_index.benchmarks, | 154 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.experiments | 150 |
| abstract_inverted_index.fundamental | 6 |
| abstract_inverted_index.multi-scale | 112 |
| abstract_inverted_index.performance | 168 |
| abstract_inverted_index.qualitative | 173 |
| abstract_inverted_index.restoration | 2, 50, 62, 92, 181 |
| abstract_inverted_index.variability | 32 |
| abstract_inverted_index.High-quality | 0 |
| abstract_inverted_index.competitors. | 189 |
| abstract_inverted_index.degradation, | 37 |
| abstract_inverted_index.evaluations, | 174 |
| abstract_inverted_index.fine-grained | 90 |
| abstract_inverted_index.innovations: | 78 |
| abstract_inverted_index.quantitative | 171 |
| abstract_inverted_index.Convolutional | 66 |
| abstract_inverted_index.architectural | 77 |
| abstract_inverted_index.effectiveness | 177 |
| abstract_inverted_index.feature-level | 146 |
| abstract_inverted_index.Skip-Connection | 107 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.52576395 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |