Hybrid data clustering approaches using bacterial colony optimization and k-means Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1088/1757-899x/1070/1/012064
Data clustering is a fashionable data analysis technique in the data mining. K-means is a popular clustering technique for solving a clustering problem. However, the k-means clustering technique extremely depends on the initial position and converges to a local optimum. On the other hand, the bacterial colony optimization (BCO) is a well-known recently proposed data clustering algorithm. However, it is a high computational cost to complete a given solution. Hence, this research paper proposes a new hybrid data clustering method for solving data clustering problem. The proposed hybrid data clustering algorithm is a combination of the BCO and K-means called BCO+KM clustering algorithm. The experimental result shows that the proposed hybrid BCO+KM data clustering algorithm reveal better cluster partitions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1757-899x/1070/1/012064
- OA Status
- diamond
- Cited By
- 13
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3129245968
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3129245968Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1757-899x/1070/1/012064Digital Object Identifier
- Title
-
Hybrid data clustering approaches using bacterial colony optimization and k-meansWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-01Full publication date if available
- Authors
-
J. Revathi, V. P. Eswaramurthy, P. PadmavathiList of authors in order
- Landing page
-
https://doi.org/10.1088/1757-899x/1070/1/012064Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1757-899x/1070/1/012064Direct OA link when available
- Concepts
-
Cluster analysis, CURE data clustering algorithm, Correlation clustering, Canopy clustering algorithm, Data mining, Computer science, Data stream clustering, Determining the number of clusters in a data set, Clustering high-dimensional data, Single-linkage clustering, Fuzzy clustering, Algorithm, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 5, 2022: 4, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3129245968 |
|---|---|
| doi | https://doi.org/10.1088/1757-899x/1070/1/012064 |
| ids.doi | https://doi.org/10.1088/1757-899x/1070/1/012064 |
| ids.mag | 3129245968 |
| ids.openalex | https://openalex.org/W3129245968 |
| fwci | 1.59405619 |
| type | article |
| title | Hybrid data clustering approaches using bacterial colony optimization and k-means |
| biblio.issue | 1 |
| biblio.volume | 1070 |
| biblio.last_page | 012064 |
| biblio.first_page | 012064 |
| topics[0].id | https://openalex.org/T10637 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Clustering Algorithms Research |
| topics[1].id | https://openalex.org/T10100 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Metaheuristic Optimization Algorithms Research |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.984000027179718 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9185700416564941 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C33704608 |
| concepts[1].level | 4 |
| concepts[1].score | 0.779748797416687 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5014717 |
| concepts[1].display_name | CURE data clustering algorithm |
| concepts[2].id | https://openalex.org/C94641424 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7111782431602478 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5172845 |
| concepts[2].display_name | Correlation clustering |
| concepts[3].id | https://openalex.org/C104047586 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6891967058181763 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5033439 |
| concepts[3].display_name | Canopy clustering algorithm |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.636034369468689 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6026034355163574 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C193143536 |
| concepts[6].level | 5 |
| concepts[6].score | 0.5897458791732788 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5227360 |
| concepts[6].display_name | Data stream clustering |
| concepts[7].id | https://openalex.org/C149872217 |
| concepts[7].level | 5 |
| concepts[7].score | 0.5368085503578186 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5265701 |
| concepts[7].display_name | Determining the number of clusters in a data set |
| concepts[8].id | https://openalex.org/C184509293 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5188868641853333 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5136711 |
| concepts[8].display_name | Clustering high-dimensional data |
| concepts[9].id | https://openalex.org/C22648726 |
| concepts[9].level | 5 |
| concepts[9].score | 0.461683452129364 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7523744 |
| concepts[9].display_name | Single-linkage clustering |
| concepts[10].id | https://openalex.org/C17212007 |
| concepts[10].level | 3 |
| concepts[10].score | 0.440856397151947 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5511111 |
| concepts[10].display_name | Fuzzy clustering |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3246455192565918 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2906193733215332 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.9185700416564941 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/cure-data-clustering-algorithm |
| keywords[1].score | 0.779748797416687 |
| keywords[1].display_name | CURE data clustering algorithm |
| keywords[2].id | https://openalex.org/keywords/correlation-clustering |
| keywords[2].score | 0.7111782431602478 |
| keywords[2].display_name | Correlation clustering |
| keywords[3].id | https://openalex.org/keywords/canopy-clustering-algorithm |
| keywords[3].score | 0.6891967058181763 |
| keywords[3].display_name | Canopy clustering algorithm |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.636034369468689 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6026034355163574 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/data-stream-clustering |
| keywords[6].score | 0.5897458791732788 |
| keywords[6].display_name | Data stream clustering |
| keywords[7].id | https://openalex.org/keywords/determining-the-number-of-clusters-in-a-data-set |
| keywords[7].score | 0.5368085503578186 |
| keywords[7].display_name | Determining the number of clusters in a data set |
| keywords[8].id | https://openalex.org/keywords/clustering-high-dimensional-data |
| keywords[8].score | 0.5188868641853333 |
| keywords[8].display_name | Clustering high-dimensional data |
| keywords[9].id | https://openalex.org/keywords/single-linkage-clustering |
| keywords[9].score | 0.461683452129364 |
| keywords[9].display_name | Single-linkage clustering |
| keywords[10].id | https://openalex.org/keywords/fuzzy-clustering |
| keywords[10].score | 0.440856397151947 |
| keywords[10].display_name | Fuzzy clustering |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3246455192565918 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2906193733215332 |
| keywords[12].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1088/1757-899x/1070/1/012064 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210189194 |
| locations[0].source.issn | 1757-8981, 1757-899X |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1757-8981 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IOP Conference Series Materials Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IOP Conference Series: Materials Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.1088/1757-899x/1070/1/012064 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5109706775 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | J. Revathi |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141431873 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Periyar University, Salem, Tamilnadu, India |
| authorships[0].institutions[0].id | https://openalex.org/I141431873 |
| authorships[0].institutions[0].ror | https://ror.org/05crs8s98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141431873 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Periyar University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J Revathi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Periyar University, Salem, Tamilnadu, India |
| authorships[1].author.id | https://openalex.org/A5029321823 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | V. P. Eswaramurthy |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Government Arts and Science College, Komarapalayam, Namakkal, Tamilnadu, India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | V P Eswaramurthy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Government Arts and Science College, Komarapalayam, Namakkal, Tamilnadu, India |
| authorships[2].author.id | https://openalex.org/A5009864588 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6030-3420 |
| authorships[2].author.display_name | P. Padmavathi |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141431873 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Periyar University, Salem, Tamilnadu, India |
| authorships[2].institutions[0].id | https://openalex.org/I141431873 |
| authorships[2].institutions[0].ror | https://ror.org/05crs8s98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141431873 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Periyar University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | P Padmavathi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Periyar University, Salem, Tamilnadu, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1757-899x/1070/1/012064 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid data clustering approaches using bacterial colony optimization and k-means |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10637 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Clustering Algorithms Research |
| related_works | https://openalex.org/W2559422900, https://openalex.org/W2188840951, https://openalex.org/W2770741777, https://openalex.org/W2590117803, https://openalex.org/W2171610853, https://openalex.org/W2393707058, https://openalex.org/W2185849206, https://openalex.org/W2202413591, https://openalex.org/W2163563073, https://openalex.org/W2389934482 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1757-899x/1070/1/012064 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210189194 |
| best_oa_location.source.issn | 1757-8981, 1757-899X |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1757-8981 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IOP Conference Series Materials Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IOP Conference Series: Materials Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1757-899x/1070/1/012064 |
| primary_location.id | doi:10.1088/1757-899x/1070/1/012064 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210189194 |
| primary_location.source.issn | 1757-8981, 1757-899X |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1757-8981 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IOP Conference Series Materials Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IOP Conference Series: Materials Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.1088/1757-899x/1070/1/012064 |
| publication_date | 2021-02-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2019617030, https://openalex.org/W2088633020, https://openalex.org/W1984779822, https://openalex.org/W6783609978, https://openalex.org/W2161160262, https://openalex.org/W2051314441, https://openalex.org/W2122122715, https://openalex.org/W2141916469, https://openalex.org/W2140405352, https://openalex.org/W1964437930, https://openalex.org/W3086841058 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 4, 15, 21, 38, 51, 61, 67, 75, 93 |
| abstract_inverted_index.On | 41 |
| abstract_inverted_index.in | 9 |
| abstract_inverted_index.is | 3, 14, 50, 60, 92 |
| abstract_inverted_index.it | 59 |
| abstract_inverted_index.of | 95 |
| abstract_inverted_index.on | 31 |
| abstract_inverted_index.to | 37, 65 |
| abstract_inverted_index.BCO | 97 |
| abstract_inverted_index.The | 86, 104 |
| abstract_inverted_index.and | 35, 98 |
| abstract_inverted_index.for | 19, 81 |
| abstract_inverted_index.new | 76 |
| abstract_inverted_index.the | 10, 25, 32, 42, 45, 96, 109 |
| abstract_inverted_index.Data | 1 |
| abstract_inverted_index.cost | 64 |
| abstract_inverted_index.data | 6, 11, 55, 78, 83, 89, 113 |
| abstract_inverted_index.high | 62 |
| abstract_inverted_index.that | 108 |
| abstract_inverted_index.this | 71 |
| abstract_inverted_index.(BCO) | 49 |
| abstract_inverted_index.given | 68 |
| abstract_inverted_index.hand, | 44 |
| abstract_inverted_index.local | 39 |
| abstract_inverted_index.other | 43 |
| abstract_inverted_index.paper | 73 |
| abstract_inverted_index.shows | 107 |
| abstract_inverted_index.BCO+KM | 101, 112 |
| abstract_inverted_index.Hence, | 70 |
| abstract_inverted_index.better | 117 |
| abstract_inverted_index.called | 100 |
| abstract_inverted_index.colony | 47 |
| abstract_inverted_index.hybrid | 77, 88, 111 |
| abstract_inverted_index.method | 80 |
| abstract_inverted_index.result | 106 |
| abstract_inverted_index.reveal | 116 |
| abstract_inverted_index.K-means | 13, 99 |
| abstract_inverted_index.cluster | 118 |
| abstract_inverted_index.depends | 30 |
| abstract_inverted_index.initial | 33 |
| abstract_inverted_index.k-means | 26 |
| abstract_inverted_index.mining. | 12 |
| abstract_inverted_index.popular | 16 |
| abstract_inverted_index.solving | 20, 82 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 24, 58 |
| abstract_inverted_index.analysis | 7 |
| abstract_inverted_index.complete | 66 |
| abstract_inverted_index.optimum. | 40 |
| abstract_inverted_index.position | 34 |
| abstract_inverted_index.problem. | 23, 85 |
| abstract_inverted_index.proposed | 54, 87, 110 |
| abstract_inverted_index.proposes | 74 |
| abstract_inverted_index.recently | 53 |
| abstract_inverted_index.research | 72 |
| abstract_inverted_index.algorithm | 91, 115 |
| abstract_inverted_index.bacterial | 46 |
| abstract_inverted_index.converges | 36 |
| abstract_inverted_index.extremely | 29 |
| abstract_inverted_index.solution. | 69 |
| abstract_inverted_index.technique | 8, 18, 28 |
| abstract_inverted_index.algorithm. | 57, 103 |
| abstract_inverted_index.clustering | 2, 17, 22, 27, 56, 79, 84, 90, 102, 114 |
| abstract_inverted_index.well-known | 52 |
| abstract_inverted_index.combination | 94 |
| abstract_inverted_index.fashionable | 5 |
| abstract_inverted_index.partitions. | 119 |
| abstract_inverted_index.experimental | 105 |
| abstract_inverted_index.optimization | 48 |
| abstract_inverted_index.computational | 63 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5109706775 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I141431873 |
| citation_normalized_percentile.value | 0.86470094 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |