Hybrid Firefly and Particle Swarm Optimization for parameter tuning of XGBoost: Network Intrusion Detection Article Swipe
This paper presents an intrusion detection framework combining machine learning, feature engineering, and metaheuristic optimization to enhance network security. The approach employs Extreme Gradient Boosting (XGBoost) for automatic feature selection and model evaluation using confusion matrix-based metrics, including accuracy, precision, recall, F1- score, true positive, and false positive rates. To optimize hyperparameters in high-dimensional datasets, a novel hybrid Firefly Algorithm–Particle Swarm Optimization (FA–PSO) is introduced, improving the exploration of optimal configurations. The framework incorporates comprehensive data preprocessing, feature engineering, and a stacked ensemble learning strategy for improved detection accuracy and generalization. Evaluations on the NSL-KDD dataset demonstrate superior performance over traditional models, confirming the effectiveness of integrating feature engineering with hybrid optimization for scalable, real-time intrusion detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7109054/v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413067313
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413067313Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7109054/v1Digital Object Identifier
- Title
-
Hybrid Firefly and Particle Swarm Optimization for parameter tuning of XGBoost: Network Intrusion DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-18Full publication date if available
- Authors
-
Paul Kojo MensahList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7109054/v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21203/rs.3.rs-7109054/v1Direct OA link when available
- Concepts
-
Computer science, Particle swarm optimization, Firefly algorithm, Hyperparameter, Intrusion detection system, Artificial intelligence, Feature engineering, Metaheuristic, Data mining, Feature selection, Feature (linguistics), Preprocessor, Confusion matrix, Machine learning, Deep learning, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413067313 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7109054/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7109054/v1 |
| ids.openalex | https://openalex.org/W4413067313 |
| fwci | 0.0 |
| type | article |
| title | Hybrid Firefly and Particle Swarm Optimization for parameter tuning of XGBoost: Network Intrusion Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9643999934196472 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7131560444831848 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C85617194 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6964936256408691 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[1].display_name | Particle swarm optimization |
| concepts[2].id | https://openalex.org/C154982244 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6249853372573853 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5451844 |
| concepts[2].display_name | Firefly algorithm |
| concepts[3].id | https://openalex.org/C8642999 |
| concepts[3].level | 2 |
| concepts[3].score | 0.600904643535614 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[3].display_name | Hyperparameter |
| concepts[4].id | https://openalex.org/C35525427 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5884586572647095 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[4].display_name | Intrusion detection system |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.536713182926178 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2778827112 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5045560598373413 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[6].display_name | Feature engineering |
| concepts[7].id | https://openalex.org/C109718341 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5032810568809509 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[7].display_name | Metaheuristic |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.47553277015686035 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C148483581 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47419267892837524 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[9].display_name | Feature selection |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47176507115364075 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C34736171 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4624491035938263 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[11].display_name | Preprocessor |
| concepts[12].id | https://openalex.org/C138602881 |
| concepts[12].level | 2 |
| concepts[12].score | 0.45870861411094666 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2709591 |
| concepts[12].display_name | Confusion matrix |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.43741416931152344 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C108583219 |
| concepts[14].level | 2 |
| concepts[14].score | 0.16453427076339722 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[14].display_name | Deep learning |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7131560444831848 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[1].score | 0.6964936256408691 |
| keywords[1].display_name | Particle swarm optimization |
| keywords[2].id | https://openalex.org/keywords/firefly-algorithm |
| keywords[2].score | 0.6249853372573853 |
| keywords[2].display_name | Firefly algorithm |
| keywords[3].id | https://openalex.org/keywords/hyperparameter |
| keywords[3].score | 0.600904643535614 |
| keywords[3].display_name | Hyperparameter |
| keywords[4].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[4].score | 0.5884586572647095 |
| keywords[4].display_name | Intrusion detection system |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.536713182926178 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/feature-engineering |
| keywords[6].score | 0.5045560598373413 |
| keywords[6].display_name | Feature engineering |
| keywords[7].id | https://openalex.org/keywords/metaheuristic |
| keywords[7].score | 0.5032810568809509 |
| keywords[7].display_name | Metaheuristic |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.47553277015686035 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/feature-selection |
| keywords[9].score | 0.47419267892837524 |
| keywords[9].display_name | Feature selection |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.47176507115364075 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/preprocessor |
| keywords[11].score | 0.4624491035938263 |
| keywords[11].display_name | Preprocessor |
| keywords[12].id | https://openalex.org/keywords/confusion-matrix |
| keywords[12].score | 0.45870861411094666 |
| keywords[12].display_name | Confusion matrix |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.43741416931152344 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/deep-learning |
| keywords[14].score | 0.16453427076339722 |
| keywords[14].display_name | Deep learning |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7109054/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7109054/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5024290405 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5383-9403 |
| authorships[0].author.display_name | Paul Kojo Mensah |
| authorships[0].countries | GH, ZM |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I28046988, https://openalex.org/I4210132509 |
| authorships[0].affiliations[0].raw_affiliation_string | Kwame Nkrumah University of Science and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I28046988 |
| authorships[0].institutions[0].ror | https://ror.org/00cb23x68 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I28046988 |
| authorships[0].institutions[0].country_code | GH |
| authorships[0].institutions[0].display_name | Kwame Nkrumah University of Science and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I4210132509 |
| authorships[0].institutions[1].ror | https://ror.org/02ykdz073 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210132509 |
| authorships[0].institutions[1].country_code | ZM |
| authorships[0].institutions[1].display_name | Kwame Nkrumah University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Paul Mensah |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Kwame Nkrumah University of Science and Technology |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21203/rs.3.rs-7109054/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid Firefly and Particle Swarm Optimization for parameter tuning of XGBoost: Network Intrusion Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9643999934196472 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W3005690382, https://openalex.org/W2553122398, https://openalex.org/W2557745602, https://openalex.org/W4390421286, https://openalex.org/W1955291487, https://openalex.org/W2361792200, https://openalex.org/W4283382030, https://openalex.org/W2945396167, https://openalex.org/W4410774226, https://openalex.org/W3172545305 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7109054/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7109054/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7109054/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7109054/v1 |
| publication_date | 2025-07-18 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 56, 81 |
| abstract_inverted_index.To | 50 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.in | 53 |
| abstract_inverted_index.is | 64 |
| abstract_inverted_index.of | 69, 106 |
| abstract_inverted_index.on | 93 |
| abstract_inverted_index.to | 16 |
| abstract_inverted_index.F1- | 42 |
| abstract_inverted_index.The | 20, 72 |
| abstract_inverted_index.and | 13, 31, 46, 80, 90 |
| abstract_inverted_index.for | 27, 86, 113 |
| abstract_inverted_index.the | 67, 94, 104 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.data | 76 |
| abstract_inverted_index.over | 100 |
| abstract_inverted_index.true | 44 |
| abstract_inverted_index.with | 110 |
| abstract_inverted_index.Swarm | 61 |
| abstract_inverted_index.false | 47 |
| abstract_inverted_index.model | 32 |
| abstract_inverted_index.novel | 57 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.using | 34 |
| abstract_inverted_index.hybrid | 58, 111 |
| abstract_inverted_index.rates. | 49 |
| abstract_inverted_index.score, | 43 |
| abstract_inverted_index.Extreme | 23 |
| abstract_inverted_index.Firefly | 59 |
| abstract_inverted_index.NSL-KDD | 95 |
| abstract_inverted_index.dataset | 96 |
| abstract_inverted_index.employs | 22 |
| abstract_inverted_index.enhance | 17 |
| abstract_inverted_index.feature | 11, 29, 78, 108 |
| abstract_inverted_index.machine | 9 |
| abstract_inverted_index.models, | 102 |
| abstract_inverted_index.network | 18 |
| abstract_inverted_index.optimal | 70 |
| abstract_inverted_index.recall, | 41 |
| abstract_inverted_index.stacked | 82 |
| abstract_inverted_index.Boosting | 25 |
| abstract_inverted_index.Gradient | 24 |
| abstract_inverted_index.accuracy | 89 |
| abstract_inverted_index.approach | 21 |
| abstract_inverted_index.ensemble | 83 |
| abstract_inverted_index.improved | 87 |
| abstract_inverted_index.learning | 84 |
| abstract_inverted_index.metrics, | 37 |
| abstract_inverted_index.optimize | 51 |
| abstract_inverted_index.positive | 48 |
| abstract_inverted_index.presents | 3 |
| abstract_inverted_index.strategy | 85 |
| abstract_inverted_index.superior | 98 |
| abstract_inverted_index.(XGBoost) | 26 |
| abstract_inverted_index.accuracy, | 39 |
| abstract_inverted_index.automatic | 28 |
| abstract_inverted_index.combining | 8 |
| abstract_inverted_index.confusion | 35 |
| abstract_inverted_index.datasets, | 55 |
| abstract_inverted_index.detection | 6, 88 |
| abstract_inverted_index.framework | 7, 73 |
| abstract_inverted_index.improving | 66 |
| abstract_inverted_index.including | 38 |
| abstract_inverted_index.intrusion | 5, 116 |
| abstract_inverted_index.learning, | 10 |
| abstract_inverted_index.positive, | 45 |
| abstract_inverted_index.real-time | 115 |
| abstract_inverted_index.scalable, | 114 |
| abstract_inverted_index.security. | 19 |
| abstract_inverted_index.selection | 30 |
| abstract_inverted_index.(FA–PSO) | 63 |
| abstract_inverted_index.confirming | 103 |
| abstract_inverted_index.detection. | 117 |
| abstract_inverted_index.evaluation | 33 |
| abstract_inverted_index.precision, | 40 |
| abstract_inverted_index.Evaluations | 92 |
| abstract_inverted_index.demonstrate | 97 |
| abstract_inverted_index.engineering | 109 |
| abstract_inverted_index.exploration | 68 |
| abstract_inverted_index.integrating | 107 |
| abstract_inverted_index.introduced, | 65 |
| abstract_inverted_index.performance | 99 |
| abstract_inverted_index.traditional | 101 |
| abstract_inverted_index.Optimization | 62 |
| abstract_inverted_index.engineering, | 12, 79 |
| abstract_inverted_index.incorporates | 74 |
| abstract_inverted_index.matrix-based | 36 |
| abstract_inverted_index.optimization | 15, 112 |
| abstract_inverted_index.comprehensive | 75 |
| abstract_inverted_index.effectiveness | 105 |
| abstract_inverted_index.metaheuristic | 14 |
| abstract_inverted_index.preprocessing, | 77 |
| abstract_inverted_index.configurations. | 71 |
| abstract_inverted_index.generalization. | 91 |
| abstract_inverted_index.hyperparameters | 52 |
| abstract_inverted_index.high-dimensional | 54 |
| abstract_inverted_index.Algorithm–Particle | 60 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5024290405 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I28046988, https://openalex.org/I4210132509 |
| citation_normalized_percentile.value | 0.38853795 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |