Hybrid-Flash Butterfly Optimization Algorithm with Logistic Mapping for Solving the Engineering Constrained Optimization Problems Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/e24040525
Only the smell perception rule is considered in the butterfly optimization algorithm (BOA), which is prone to falling into a local optimum. Compared with the original BOA, an extra operator, i.e., color perception rule, is incorporated into the proposed hybrid-flash butterfly optimization algorithm (HFBOA), which makes it more in line with the actual foraging characteristics of butterflies in nature. Besides, updating the strategy of the control parameters by the logistic mapping is used in the HFBOA for enhancing the global optimal ability. The performance of the proposed method was verified by twelve benchmark functions, where the comparison experiment results show that the HFBOA converges quicker and has better stability for numerical optimization problems, which are compared with six state-of-the-art optimization methods. Additionally, the proposed HFBOA is successfully applied to six engineering constrained optimization problems (i.e., tubular column design, tension/compression spring design, cantilever beam design, etc.). The simulation results reveal that the proposed approach demonstrates superior performance in solving complex real-world engineering constrained tasks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e24040525
- https://www.mdpi.com/1099-4300/24/4/525/pdf?version=1649654809
- OA Status
- gold
- Cited By
- 41
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224212468
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224212468Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e24040525Digital Object Identifier
- Title
-
Hybrid-Flash Butterfly Optimization Algorithm with Logistic Mapping for Solving the Engineering Constrained Optimization ProblemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-08Full publication date if available
- Authors
-
Mengjian Zhang, Deguang Wang, Jing YangList of authors in order
- Landing page
-
https://doi.org/10.3390/e24040525Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/24/4/525/pdf?version=1649654809Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/24/4/525/pdf?version=1649654809Direct OA link when available
- Concepts
-
Benchmark (surveying), Computer science, Mathematical optimization, Continuous optimization, Optimization problem, Multi-objective optimization, Stability (learning theory), Engineering optimization, Algorithm, Multi-swarm optimization, Mathematics, Machine learning, Geodesy, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
41Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 18, 2023: 8, 2022: 7Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224212468 |
|---|---|
| doi | https://doi.org/10.3390/e24040525 |
| ids.doi | https://doi.org/10.3390/e24040525 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35455188 |
| ids.openalex | https://openalex.org/W4224212468 |
| fwci | 8.02775163 |
| type | article |
| title | Hybrid-Flash Butterfly Optimization Algorithm with Logistic Mapping for Solving the Engineering Constrained Optimization Problems |
| awards[0].id | https://openalex.org/G6901058165 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | No.61640014 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 24 |
| biblio.last_page | 525 |
| biblio.first_page | 525 |
| topics[0].id | https://openalex.org/T10100 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Metaheuristic Optimization Algorithms Research |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[2].id | https://openalex.org/T11115 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Topology Optimization in Engineering |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6225749254226685 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6049389839172363 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C126255220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5706617832183838 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[2].display_name | Mathematical optimization |
| concepts[3].id | https://openalex.org/C92995354 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5194956064224243 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165499 |
| concepts[3].display_name | Continuous optimization |
| concepts[4].id | https://openalex.org/C137836250 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5163308382034302 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[4].display_name | Optimization problem |
| concepts[5].id | https://openalex.org/C68781425 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48378726840019226 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2052203 |
| concepts[5].display_name | Multi-objective optimization |
| concepts[6].id | https://openalex.org/C112972136 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42991501092910767 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[6].display_name | Stability (learning theory) |
| concepts[7].id | https://openalex.org/C110850998 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4287119209766388 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5377895 |
| concepts[7].display_name | Engineering optimization |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36916404962539673 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C122357587 |
| concepts[9].level | 3 |
| concepts[9].score | 0.22144028544425964 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6934508 |
| concepts[9].display_name | Multi-swarm optimization |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.20553076267242432 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11227422952651978 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.6225749254226685 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6049389839172363 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[2].score | 0.5706617832183838 |
| keywords[2].display_name | Mathematical optimization |
| keywords[3].id | https://openalex.org/keywords/continuous-optimization |
| keywords[3].score | 0.5194956064224243 |
| keywords[3].display_name | Continuous optimization |
| keywords[4].id | https://openalex.org/keywords/optimization-problem |
| keywords[4].score | 0.5163308382034302 |
| keywords[4].display_name | Optimization problem |
| keywords[5].id | https://openalex.org/keywords/multi-objective-optimization |
| keywords[5].score | 0.48378726840019226 |
| keywords[5].display_name | Multi-objective optimization |
| keywords[6].id | https://openalex.org/keywords/stability |
| keywords[6].score | 0.42991501092910767 |
| keywords[6].display_name | Stability (learning theory) |
| keywords[7].id | https://openalex.org/keywords/engineering-optimization |
| keywords[7].score | 0.4287119209766388 |
| keywords[7].display_name | Engineering optimization |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.36916404962539673 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/multi-swarm-optimization |
| keywords[9].score | 0.22144028544425964 |
| keywords[9].display_name | Multi-swarm optimization |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.20553076267242432 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.11227422952651978 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/e24040525 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/24/4/525/pdf?version=1649654809 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e24040525 |
| locations[1].id | pmid:35455188 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35455188 |
| locations[2].id | pmh:oai:doaj.org/article:81b4003a0dba42208bdccf069ee707a5 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, Vol 24, Iss 4, p 525 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/81b4003a0dba42208bdccf069ee707a5 |
| locations[3].id | pmh:oai:mdpi.com:/1099-4300/24/4/525/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy; Volume 24; Issue 4; Pages: 525 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/e24040525 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9028546 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Entropy (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9028546 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5071996087 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8546-9972 |
| authorships[0].author.display_name | Mengjian Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I178232147 |
| authorships[0].affiliations[1].raw_affiliation_string | Electrical Engineering College, Guizhou University, Guiyang 550025, China |
| authorships[0].institutions[0].id | https://openalex.org/I178232147 |
| authorships[0].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guizhou University |
| authorships[0].institutions[1].id | https://openalex.org/I90610280 |
| authorships[0].institutions[1].ror | https://ror.org/0530pts50 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I90610280 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | South China University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mengjian Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electrical Engineering College, Guizhou University, Guiyang 550025, China, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| authorships[1].author.id | https://openalex.org/A5024185697 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4936-8773 |
| authorships[1].author.display_name | Deguang Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[1].affiliations[0].raw_affiliation_string | Electrical Engineering College, Guizhou University, Guiyang 550025, China |
| authorships[1].institutions[0].id | https://openalex.org/I178232147 |
| authorships[1].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guizhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Deguang Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Electrical Engineering College, Guizhou University, Guiyang 550025, China |
| authorships[2].author.id | https://openalex.org/A5100704230 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6407-1276 |
| authorships[2].author.display_name | Jing Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[2].affiliations[0].raw_affiliation_string | Electrical Engineering College, Guizhou University, Guiyang 550025, China |
| authorships[2].institutions[0].id | https://openalex.org/I178232147 |
| authorships[2].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guizhou University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jing Yang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Electrical Engineering College, Guizhou University, Guiyang 550025, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/24/4/525/pdf?version=1649654809 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid-Flash Butterfly Optimization Algorithm with Logistic Mapping for Solving the Engineering Constrained Optimization Problems |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10100 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Metaheuristic Optimization Algorithms Research |
| related_works | https://openalex.org/W2907206257, https://openalex.org/W2389841385, https://openalex.org/W2085577866, https://openalex.org/W1523280855, https://openalex.org/W2792234022, https://openalex.org/W2033459519, https://openalex.org/W2598852150, https://openalex.org/W2198098822, https://openalex.org/W3176773450, https://openalex.org/W3171195395 |
| cited_by_count | 41 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 18 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/e24040525 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/24/4/525/pdf?version=1649654809 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e24040525 |
| primary_location.id | doi:10.3390/e24040525 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/24/4/525/pdf?version=1649654809 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e24040525 |
| publication_date | 2022-04-08 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2131613989, https://openalex.org/W2034988449, https://openalex.org/W2013885787, https://openalex.org/W6682642761, https://openalex.org/W3199178291, https://openalex.org/W2107941094, https://openalex.org/W2125757417, https://openalex.org/W2061438946, https://openalex.org/W2028569720, https://openalex.org/W1595159159, https://openalex.org/W2790662215, https://openalex.org/W2994063252, https://openalex.org/W2963679418, https://openalex.org/W3096595403, https://openalex.org/W2596355100, https://openalex.org/W3038970584, https://openalex.org/W2889083964, https://openalex.org/W3185430200, https://openalex.org/W4214525393, https://openalex.org/W2077742628, https://openalex.org/W2151554678, https://openalex.org/W2102892532, https://openalex.org/W2137340504, https://openalex.org/W2003890325, https://openalex.org/W3043211958, https://openalex.org/W2051914369, https://openalex.org/W2014162517, https://openalex.org/W2076608183, https://openalex.org/W2253306495, https://openalex.org/W2151339633, https://openalex.org/W6658179767, https://openalex.org/W3087325074, https://openalex.org/W2147271386, https://openalex.org/W2919979744, https://openalex.org/W2290883490, https://openalex.org/W2091638274, https://openalex.org/W883434633, https://openalex.org/W2030193831 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 19 |
| abstract_inverted_index.an | 27 |
| abstract_inverted_index.by | 67, 90 |
| abstract_inverted_index.in | 7, 48, 57, 73, 156 |
| abstract_inverted_index.is | 5, 14, 34, 71, 125 |
| abstract_inverted_index.it | 46 |
| abstract_inverted_index.of | 55, 63, 84 |
| abstract_inverted_index.to | 16, 128 |
| abstract_inverted_index.The | 82, 145 |
| abstract_inverted_index.and | 105 |
| abstract_inverted_index.are | 114 |
| abstract_inverted_index.for | 76, 109 |
| abstract_inverted_index.has | 106 |
| abstract_inverted_index.six | 117, 129 |
| abstract_inverted_index.the | 1, 8, 24, 37, 51, 61, 64, 68, 74, 78, 85, 95, 101, 122, 150 |
| abstract_inverted_index.was | 88 |
| abstract_inverted_index.BOA, | 26 |
| abstract_inverted_index.Only | 0 |
| abstract_inverted_index.beam | 142 |
| abstract_inverted_index.into | 18, 36 |
| abstract_inverted_index.line | 49 |
| abstract_inverted_index.more | 47 |
| abstract_inverted_index.rule | 4 |
| abstract_inverted_index.show | 99 |
| abstract_inverted_index.that | 100, 149 |
| abstract_inverted_index.used | 72 |
| abstract_inverted_index.with | 23, 50, 116 |
| abstract_inverted_index.HFBOA | 75, 102, 124 |
| abstract_inverted_index.color | 31 |
| abstract_inverted_index.extra | 28 |
| abstract_inverted_index.i.e., | 30 |
| abstract_inverted_index.local | 20 |
| abstract_inverted_index.makes | 45 |
| abstract_inverted_index.prone | 15 |
| abstract_inverted_index.rule, | 33 |
| abstract_inverted_index.smell | 2 |
| abstract_inverted_index.where | 94 |
| abstract_inverted_index.which | 13, 44, 113 |
| abstract_inverted_index.(BOA), | 12 |
| abstract_inverted_index.(i.e., | 134 |
| abstract_inverted_index.actual | 52 |
| abstract_inverted_index.better | 107 |
| abstract_inverted_index.column | 136 |
| abstract_inverted_index.etc.). | 144 |
| abstract_inverted_index.global | 79 |
| abstract_inverted_index.method | 87 |
| abstract_inverted_index.reveal | 148 |
| abstract_inverted_index.spring | 139 |
| abstract_inverted_index.tasks. | 162 |
| abstract_inverted_index.twelve | 91 |
| abstract_inverted_index.applied | 127 |
| abstract_inverted_index.complex | 158 |
| abstract_inverted_index.control | 65 |
| abstract_inverted_index.design, | 137, 140, 143 |
| abstract_inverted_index.falling | 17 |
| abstract_inverted_index.mapping | 70 |
| abstract_inverted_index.nature. | 58 |
| abstract_inverted_index.optimal | 80 |
| abstract_inverted_index.quicker | 104 |
| abstract_inverted_index.results | 98, 147 |
| abstract_inverted_index.solving | 157 |
| abstract_inverted_index.tubular | 135 |
| abstract_inverted_index.(HFBOA), | 43 |
| abstract_inverted_index.Besides, | 59 |
| abstract_inverted_index.Compared | 22 |
| abstract_inverted_index.ability. | 81 |
| abstract_inverted_index.approach | 152 |
| abstract_inverted_index.compared | 115 |
| abstract_inverted_index.foraging | 53 |
| abstract_inverted_index.logistic | 69 |
| abstract_inverted_index.methods. | 120 |
| abstract_inverted_index.optimum. | 21 |
| abstract_inverted_index.original | 25 |
| abstract_inverted_index.problems | 133 |
| abstract_inverted_index.proposed | 38, 86, 123, 151 |
| abstract_inverted_index.strategy | 62 |
| abstract_inverted_index.superior | 154 |
| abstract_inverted_index.updating | 60 |
| abstract_inverted_index.verified | 89 |
| abstract_inverted_index.algorithm | 11, 42 |
| abstract_inverted_index.benchmark | 92 |
| abstract_inverted_index.butterfly | 9, 40 |
| abstract_inverted_index.converges | 103 |
| abstract_inverted_index.enhancing | 77 |
| abstract_inverted_index.numerical | 110 |
| abstract_inverted_index.operator, | 29 |
| abstract_inverted_index.problems, | 112 |
| abstract_inverted_index.stability | 108 |
| abstract_inverted_index.cantilever | 141 |
| abstract_inverted_index.comparison | 96 |
| abstract_inverted_index.considered | 6 |
| abstract_inverted_index.experiment | 97 |
| abstract_inverted_index.functions, | 93 |
| abstract_inverted_index.parameters | 66 |
| abstract_inverted_index.perception | 3, 32 |
| abstract_inverted_index.real-world | 159 |
| abstract_inverted_index.simulation | 146 |
| abstract_inverted_index.butterflies | 56 |
| abstract_inverted_index.constrained | 131, 161 |
| abstract_inverted_index.engineering | 130, 160 |
| abstract_inverted_index.performance | 83, 155 |
| abstract_inverted_index.demonstrates | 153 |
| abstract_inverted_index.hybrid-flash | 39 |
| abstract_inverted_index.incorporated | 35 |
| abstract_inverted_index.optimization | 10, 41, 111, 119, 132 |
| abstract_inverted_index.successfully | 126 |
| abstract_inverted_index.Additionally, | 121 |
| abstract_inverted_index.characteristics | 54 |
| abstract_inverted_index.state-of-the-art | 118 |
| abstract_inverted_index.tension/compression | 138 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5100704230 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I178232147 |
| citation_normalized_percentile.value | 0.96681897 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |