Hybrid Mask Generation for Infrared Small Target Detection with Single-Point Supervision Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.04011
Single-frame infrared small target (SIRST) detection poses a significant challenge due to the requirement to discern minute targets amidst complex infrared background clutter. In this paper, we focus on a weakly-supervised paradigm to obtain high-quality pseudo masks from the point-level annotation by integrating a novel learning-free method with the hybrid of the learning-based method. The learning-free method adheres to a sequential process, progressing from a point annotation to the bounding box that encompasses the target, and subsequently to detailed pseudo masks, while the hybrid is achieved through filtering out false alarms and retrieving missed detections in the network's prediction to provide a reliable supplement for learning-free masks. The experimental results show that our learning-free method generates pseudo masks with an average Intersection over Union (IoU) that is 4.3% higher than the second-best learning-free competitor across three datasets, while the hybrid learning-based method further enhances the quality of pseudo masks, achieving an additional average IoU increase of 3.4%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.04011
- https://arxiv.org/pdf/2409.04011
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403586114
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403586114Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.04011Digital Object Identifier
- Title
-
Hybrid Mask Generation for Infrared Small Target Detection with Single-Point SupervisionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-06Full publication date if available
- Authors
-
Weijie He, Mushui Liu, Yunlong Yu, Zhe‐Ming Lu, Xi LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.04011Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.04011Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.04011Direct OA link when available
- Concepts
-
Infrared, Point (geometry), Computer science, Optics, Physics, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403586114 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.04011 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.04011 |
| ids.openalex | https://openalex.org/W4403586114 |
| fwci | |
| type | preprint |
| title | Hybrid Mask Generation for Infrared Small Target Detection with Single-Point Supervision |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14158 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Optical Systems and Laser Technology |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| topics[2].id | https://openalex.org/T11637 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9884999990463257 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Semiconductor Detectors and Materials |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158355884 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6680938005447388 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11388 |
| concepts[0].display_name | Infrared |
| concepts[1].id | https://openalex.org/C28719098 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6097102761268616 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[1].display_name | Point (geometry) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.32081276178359985 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C120665830 |
| concepts[3].level | 1 |
| concepts[3].score | 0.30563884973526 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[3].display_name | Optics |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.15053260326385498 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0970546305179596 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C2524010 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[6].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/infrared |
| keywords[0].score | 0.6680938005447388 |
| keywords[0].display_name | Infrared |
| keywords[1].id | https://openalex.org/keywords/point |
| keywords[1].score | 0.6097102761268616 |
| keywords[1].display_name | Point (geometry) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.32081276178359985 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/optics |
| keywords[3].score | 0.30563884973526 |
| keywords[3].display_name | Optics |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.15053260326385498 |
| keywords[4].display_name | Physics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.0970546305179596 |
| keywords[5].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.04011 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.04011 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.04011 |
| locations[1].id | doi:10.48550/arxiv.2409.04011 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.04011 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102589238 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Weijie He |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | He, Weijie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5039853684 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2909-7702 |
| authorships[1].author.display_name | Mushui Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Mushui |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100722511 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0294-2099 |
| authorships[2].author.display_name | Yunlong Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu, Yunlong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5083531923 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1785-7847 |
| authorships[3].author.display_name | Zhe‐Ming Lu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lu, Zheming |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100407758 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3023-1662 |
| authorships[4].author.display_name | Xi Li |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Li, Xi |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.04011 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid Mask Generation for Infrared Small Target Detection with Single-Point Supervision |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14158 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Optical Systems and Laser Technology |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.04011 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.04011 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.04011 |
| primary_location.id | pmh:oai:arXiv.org:2409.04011 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.04011 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.04011 |
| publication_date | 2024-09-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 29, 43, 59, 64, 101 |
| abstract_inverted_index.In | 23 |
| abstract_inverted_index.an | 119, 150 |
| abstract_inverted_index.by | 41 |
| abstract_inverted_index.in | 95 |
| abstract_inverted_index.is | 84, 126 |
| abstract_inverted_index.of | 50, 146, 155 |
| abstract_inverted_index.on | 28 |
| abstract_inverted_index.to | 11, 14, 32, 58, 67, 77, 99 |
| abstract_inverted_index.we | 26 |
| abstract_inverted_index.IoU | 153 |
| abstract_inverted_index.The | 54, 107 |
| abstract_inverted_index.and | 75, 91 |
| abstract_inverted_index.box | 70 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.for | 104 |
| abstract_inverted_index.our | 112 |
| abstract_inverted_index.out | 88 |
| abstract_inverted_index.the | 12, 38, 48, 51, 68, 73, 82, 96, 130, 138, 144 |
| abstract_inverted_index.4.3% | 127 |
| abstract_inverted_index.from | 37, 63 |
| abstract_inverted_index.over | 122 |
| abstract_inverted_index.show | 110 |
| abstract_inverted_index.than | 129 |
| abstract_inverted_index.that | 71, 111, 125 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.with | 47, 118 |
| abstract_inverted_index.(IoU) | 124 |
| abstract_inverted_index.3.4%. | 156 |
| abstract_inverted_index.Union | 123 |
| abstract_inverted_index.false | 89 |
| abstract_inverted_index.focus | 27 |
| abstract_inverted_index.masks | 36, 117 |
| abstract_inverted_index.novel | 44 |
| abstract_inverted_index.point | 65 |
| abstract_inverted_index.poses | 6 |
| abstract_inverted_index.small | 2 |
| abstract_inverted_index.three | 135 |
| abstract_inverted_index.while | 81, 137 |
| abstract_inverted_index.across | 134 |
| abstract_inverted_index.alarms | 90 |
| abstract_inverted_index.amidst | 18 |
| abstract_inverted_index.higher | 128 |
| abstract_inverted_index.hybrid | 49, 83, 139 |
| abstract_inverted_index.masks, | 80, 148 |
| abstract_inverted_index.masks. | 106 |
| abstract_inverted_index.method | 46, 56, 114, 141 |
| abstract_inverted_index.minute | 16 |
| abstract_inverted_index.missed | 93 |
| abstract_inverted_index.obtain | 33 |
| abstract_inverted_index.paper, | 25 |
| abstract_inverted_index.pseudo | 35, 79, 116, 147 |
| abstract_inverted_index.target | 3 |
| abstract_inverted_index.(SIRST) | 4 |
| abstract_inverted_index.adheres | 57 |
| abstract_inverted_index.average | 120, 152 |
| abstract_inverted_index.complex | 19 |
| abstract_inverted_index.discern | 15 |
| abstract_inverted_index.further | 142 |
| abstract_inverted_index.method. | 53 |
| abstract_inverted_index.provide | 100 |
| abstract_inverted_index.quality | 145 |
| abstract_inverted_index.results | 109 |
| abstract_inverted_index.target, | 74 |
| abstract_inverted_index.targets | 17 |
| abstract_inverted_index.through | 86 |
| abstract_inverted_index.achieved | 85 |
| abstract_inverted_index.bounding | 69 |
| abstract_inverted_index.clutter. | 22 |
| abstract_inverted_index.detailed | 78 |
| abstract_inverted_index.enhances | 143 |
| abstract_inverted_index.increase | 154 |
| abstract_inverted_index.infrared | 1, 20 |
| abstract_inverted_index.paradigm | 31 |
| abstract_inverted_index.process, | 61 |
| abstract_inverted_index.reliable | 102 |
| abstract_inverted_index.achieving | 149 |
| abstract_inverted_index.challenge | 9 |
| abstract_inverted_index.datasets, | 136 |
| abstract_inverted_index.detection | 5 |
| abstract_inverted_index.filtering | 87 |
| abstract_inverted_index.generates | 115 |
| abstract_inverted_index.network's | 97 |
| abstract_inverted_index.additional | 151 |
| abstract_inverted_index.annotation | 40, 66 |
| abstract_inverted_index.background | 21 |
| abstract_inverted_index.competitor | 133 |
| abstract_inverted_index.detections | 94 |
| abstract_inverted_index.prediction | 98 |
| abstract_inverted_index.retrieving | 92 |
| abstract_inverted_index.sequential | 60 |
| abstract_inverted_index.supplement | 103 |
| abstract_inverted_index.encompasses | 72 |
| abstract_inverted_index.integrating | 42 |
| abstract_inverted_index.point-level | 39 |
| abstract_inverted_index.progressing | 62 |
| abstract_inverted_index.requirement | 13 |
| abstract_inverted_index.second-best | 131 |
| abstract_inverted_index.significant | 8 |
| abstract_inverted_index.Intersection | 121 |
| abstract_inverted_index.Single-frame | 0 |
| abstract_inverted_index.experimental | 108 |
| abstract_inverted_index.high-quality | 34 |
| abstract_inverted_index.subsequently | 76 |
| abstract_inverted_index.learning-free | 45, 55, 105, 113, 132 |
| abstract_inverted_index.learning-based | 52, 140 |
| abstract_inverted_index.weakly-supervised | 30 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |