Hybrid Meta-Heuristic based Feature Selection Mechanism for Cyber-Attack Detection in IoT-enabled Networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2023.01.014
Today's technologically advanced connected world is mostly reliant on the Internet of Things (IoT)-enabled smart gadgets and easy connectivity. These smart gadgets are more susceptible to malicious practices found in network traffic, which is one of the biggest challenges in cyber security domain. As a result, many systems and end-users are adversely affected by this practice. However, intrusion detection systems (IDS) are often applied to guard against cyber-attacks. Since, IDS plays a key role in detecting and preventing cyber-attacks in IoT-enabled networks, but design of an efficient and fast IDS system for cyber-attack detection is still a challenging research issue. Moreover, IDS datasets contain multiple features and to design an efficient and fast IDS, feature selection (FS) is an essential mechanism to remove the irrelevant and redundant features from large IDS datasets. Thus, this paper has proposed a hybrid feature selection scheme in which statistical test-based filter approaches such as Chi-Square (χ^2), Pearson's Correlation Coefficient (PCC), and Mutual Information (MI) are combined with a Non-Dominated Sorting Genetic Algorithm (NSGA-II)-based metaheuristic approach for optimization of features. In the proposed scheme, filter-based methods are employed to rank the features for guided population initialization in NSGA-II for faster convergence towards a solution. Performance evaluation of the proposed scheme is evaluated using the ToN-IoT dataset in terms of number of selected features and accuracy. Experimental outcomes are compared with some latest state-of-art techniques. Result analysis confirms the superior performance of the proposed scheme with minimum number of optimized features (only 13 out of 43 features) and maximum accuracy (99.48%).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2023.01.014
- OA Status
- diamond
- Cited By
- 61
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320016096
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320016096Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2023.01.014Digital Object Identifier
- Title
-
Hybrid Meta-Heuristic based Feature Selection Mechanism for Cyber-Attack Detection in IoT-enabled NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Arun Kumar Dey, Govind P. Gupta, Satya Prakash SahuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2023.01.014Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2023.01.014Direct OA link when available
- Concepts
-
Computer science, Feature selection, Intrusion detection system, Initialization, Heuristic, Data mining, Artificial intelligence, Machine learning, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
61Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 31, 2024: 20, 2023: 10Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320016096 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2023.01.014 |
| ids.doi | https://doi.org/10.1016/j.procs.2023.01.014 |
| ids.openalex | https://openalex.org/W4320016096 |
| fwci | 26.81268981 |
| type | article |
| title | Hybrid Meta-Heuristic based Feature Selection Mechanism for Cyber-Attack Detection in IoT-enabled Networks |
| biblio.issue | |
| biblio.volume | 218 |
| biblio.last_page | 327 |
| biblio.first_page | 318 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| funders[0].id | https://openalex.org/F4320318540 |
| funders[0].ror | https://ror.org/02y553197 |
| funders[0].display_name | National Institute of Technology, Raipur |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8960508108139038 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5968999266624451 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C35525427 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5494078397750854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[2].display_name | Intrusion detection system |
| concepts[3].id | https://openalex.org/C114466953 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5006618499755859 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6034165 |
| concepts[3].display_name | Initialization |
| concepts[4].id | https://openalex.org/C173801870 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47391828894615173 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[4].display_name | Heuristic |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4398965537548065 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3765687346458435 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3453807830810547 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C199360897 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[8].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8960508108139038 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.5968999266624451 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[2].score | 0.5494078397750854 |
| keywords[2].display_name | Intrusion detection system |
| keywords[3].id | https://openalex.org/keywords/initialization |
| keywords[3].score | 0.5006618499755859 |
| keywords[3].display_name | Initialization |
| keywords[4].id | https://openalex.org/keywords/heuristic |
| keywords[4].score | 0.47391828894615173 |
| keywords[4].display_name | Heuristic |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4398965537548065 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3765687346458435 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3453807830810547 |
| keywords[7].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2023.01.014 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2023.01.014 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5059461271 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5084-4285 |
| authorships[0].author.display_name | Arun Kumar Dey |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I38335241 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Technology, National Instittue of Technology, Raipur 492010, C. G., India |
| authorships[0].institutions[0].id | https://openalex.org/I38335241 |
| authorships[0].institutions[0].ror | https://ror.org/02y553197 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I38335241 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | National Institute of Technology Raipur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arun Kumar Dey |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Information Technology, National Instittue of Technology, Raipur 492010, C. G., India |
| authorships[1].author.id | https://openalex.org/A5090381393 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0456-1572 |
| authorships[1].author.display_name | Govind P. Gupta |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I38335241 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Technology, National Instittue of Technology, Raipur 492010, C. G., India |
| authorships[1].institutions[0].id | https://openalex.org/I38335241 |
| authorships[1].institutions[0].ror | https://ror.org/02y553197 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I38335241 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | National Institute of Technology Raipur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Govind P. Gupta |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Information Technology, National Instittue of Technology, Raipur 492010, C. G., India |
| authorships[2].author.id | https://openalex.org/A5022463037 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3245-7710 |
| authorships[2].author.display_name | Satya Prakash Sahu |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I38335241 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Information Technology, National Instittue of Technology, Raipur 492010, C. G., India |
| authorships[2].institutions[0].id | https://openalex.org/I38335241 |
| authorships[2].institutions[0].ror | https://ror.org/02y553197 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I38335241 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | National Institute of Technology Raipur |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Satya Prakash Sahu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Information Technology, National Instittue of Technology, Raipur 492010, C. G., India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2023.01.014 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid Meta-Heuristic based Feature Selection Mechanism for Cyber-Attack Detection in IoT-enabled Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W3204184292, https://openalex.org/W3176564347, https://openalex.org/W2355833770, https://openalex.org/W1985458517, https://openalex.org/W3031039437, https://openalex.org/W183202219, https://openalex.org/W3095877357, https://openalex.org/W2072565696, https://openalex.org/W2050451745, https://openalex.org/W2378903222 |
| cited_by_count | 61 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 31 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 20 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2023.01.014 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2023.01.014 |
| primary_location.id | doi:10.1016/j.procs.2023.01.014 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2023.01.014 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6623899232, https://openalex.org/W6788043584, https://openalex.org/W3001675796, https://openalex.org/W2789654058, https://openalex.org/W2946302218, https://openalex.org/W3127432888, https://openalex.org/W2795475639, https://openalex.org/W3155958087, https://openalex.org/W2624712240, https://openalex.org/W2956839102, https://openalex.org/W6811519063, https://openalex.org/W3119918144, https://openalex.org/W6775356186, https://openalex.org/W3112746081, https://openalex.org/W3108615370, https://openalex.org/W3206599325, https://openalex.org/W6838888293, https://openalex.org/W2126105956, https://openalex.org/W2443374046, https://openalex.org/W1992617793, https://openalex.org/W3097274210, https://openalex.org/W6683256029, https://openalex.org/W6769364731, https://openalex.org/W2901421269, https://openalex.org/W3085955590, https://openalex.org/W1570713908, https://openalex.org/W874830204, https://openalex.org/W4226182280, https://openalex.org/W3117829857, https://openalex.org/W4281493093, https://openalex.org/W2980506460 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 44, 71, 96, 137, 163, 197 |
| abstract_inverted_index.13 | 246 |
| abstract_inverted_index.43 | 249 |
| abstract_inverted_index.As | 43 |
| abstract_inverted_index.In | 175 |
| abstract_inverted_index.an | 85, 109, 118 |
| abstract_inverted_index.as | 149 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 29, 39, 74, 79, 142, 191, 211 |
| abstract_inverted_index.is | 5, 33, 94, 117, 205 |
| abstract_inverted_index.of | 11, 35, 84, 173, 201, 213, 215, 235, 242, 248 |
| abstract_inverted_index.on | 8 |
| abstract_inverted_index.to | 25, 64, 107, 121, 183 |
| abstract_inverted_index.IDS | 69, 89, 101, 130 |
| abstract_inverted_index.and | 16, 48, 76, 87, 106, 111, 125, 156, 218, 251 |
| abstract_inverted_index.are | 22, 50, 61, 160, 181, 222 |
| abstract_inverted_index.but | 82 |
| abstract_inverted_index.for | 91, 171, 187, 193 |
| abstract_inverted_index.has | 135 |
| abstract_inverted_index.key | 72 |
| abstract_inverted_index.one | 34 |
| abstract_inverted_index.out | 247 |
| abstract_inverted_index.the | 9, 36, 123, 176, 185, 202, 208, 232, 236 |
| abstract_inverted_index.(FS) | 116 |
| abstract_inverted_index.(MI) | 159 |
| abstract_inverted_index.IDS, | 113 |
| abstract_inverted_index.easy | 17 |
| abstract_inverted_index.fast | 88, 112 |
| abstract_inverted_index.from | 128 |
| abstract_inverted_index.many | 46 |
| abstract_inverted_index.more | 23 |
| abstract_inverted_index.rank | 184 |
| abstract_inverted_index.role | 73 |
| abstract_inverted_index.some | 225 |
| abstract_inverted_index.such | 148 |
| abstract_inverted_index.this | 54, 133 |
| abstract_inverted_index.with | 162, 224, 239 |
| abstract_inverted_index.(IDS) | 60 |
| abstract_inverted_index.(only | 245 |
| abstract_inverted_index.These | 19 |
| abstract_inverted_index.Thus, | 132 |
| abstract_inverted_index.cyber | 40 |
| abstract_inverted_index.found | 28 |
| abstract_inverted_index.guard | 65 |
| abstract_inverted_index.large | 129 |
| abstract_inverted_index.often | 62 |
| abstract_inverted_index.paper | 134 |
| abstract_inverted_index.plays | 70 |
| abstract_inverted_index.smart | 14, 20 |
| abstract_inverted_index.still | 95 |
| abstract_inverted_index.terms | 212 |
| abstract_inverted_index.using | 207 |
| abstract_inverted_index.which | 32, 143 |
| abstract_inverted_index.world | 4 |
| abstract_inverted_index.(PCC), | 155 |
| abstract_inverted_index.Mutual | 157 |
| abstract_inverted_index.Result | 229 |
| abstract_inverted_index.Since, | 68 |
| abstract_inverted_index.Things | 12 |
| abstract_inverted_index.design | 83, 108 |
| abstract_inverted_index.faster | 194 |
| abstract_inverted_index.filter | 146 |
| abstract_inverted_index.guided | 188 |
| abstract_inverted_index.hybrid | 138 |
| abstract_inverted_index.issue. | 99 |
| abstract_inverted_index.latest | 226 |
| abstract_inverted_index.mostly | 6 |
| abstract_inverted_index.number | 214, 241 |
| abstract_inverted_index.remove | 122 |
| abstract_inverted_index.scheme | 141, 204, 238 |
| abstract_inverted_index.system | 90 |
| abstract_inverted_index.(χ^2), | 151 |
| abstract_inverted_index.Genetic | 166 |
| abstract_inverted_index.NSGA-II | 192 |
| abstract_inverted_index.Sorting | 165 |
| abstract_inverted_index.ToN-IoT | 209 |
| abstract_inverted_index.Today's | 0 |
| abstract_inverted_index.against | 66 |
| abstract_inverted_index.applied | 63 |
| abstract_inverted_index.biggest | 37 |
| abstract_inverted_index.contain | 103 |
| abstract_inverted_index.dataset | 210 |
| abstract_inverted_index.domain. | 42 |
| abstract_inverted_index.feature | 114, 139 |
| abstract_inverted_index.gadgets | 15, 21 |
| abstract_inverted_index.maximum | 252 |
| abstract_inverted_index.methods | 180 |
| abstract_inverted_index.minimum | 240 |
| abstract_inverted_index.network | 30 |
| abstract_inverted_index.reliant | 7 |
| abstract_inverted_index.result, | 45 |
| abstract_inverted_index.scheme, | 178 |
| abstract_inverted_index.systems | 47, 59 |
| abstract_inverted_index.towards | 196 |
| abstract_inverted_index.However, | 56 |
| abstract_inverted_index.Internet | 10 |
| abstract_inverted_index.accuracy | 253 |
| abstract_inverted_index.advanced | 2 |
| abstract_inverted_index.affected | 52 |
| abstract_inverted_index.analysis | 230 |
| abstract_inverted_index.approach | 170 |
| abstract_inverted_index.combined | 161 |
| abstract_inverted_index.compared | 223 |
| abstract_inverted_index.confirms | 231 |
| abstract_inverted_index.datasets | 102 |
| abstract_inverted_index.employed | 182 |
| abstract_inverted_index.features | 105, 127, 186, 217, 244 |
| abstract_inverted_index.multiple | 104 |
| abstract_inverted_index.outcomes | 221 |
| abstract_inverted_index.proposed | 136, 177, 203, 237 |
| abstract_inverted_index.research | 98 |
| abstract_inverted_index.security | 41 |
| abstract_inverted_index.selected | 216 |
| abstract_inverted_index.superior | 233 |
| abstract_inverted_index.traffic, | 31 |
| abstract_inverted_index.(99.48%). | 254 |
| abstract_inverted_index.Algorithm | 167 |
| abstract_inverted_index.Moreover, | 100 |
| abstract_inverted_index.Pearson's | 152 |
| abstract_inverted_index.accuracy. | 219 |
| abstract_inverted_index.adversely | 51 |
| abstract_inverted_index.connected | 3 |
| abstract_inverted_index.datasets. | 131 |
| abstract_inverted_index.detecting | 75 |
| abstract_inverted_index.detection | 58, 93 |
| abstract_inverted_index.efficient | 86, 110 |
| abstract_inverted_index.end-users | 49 |
| abstract_inverted_index.essential | 119 |
| abstract_inverted_index.evaluated | 206 |
| abstract_inverted_index.features) | 250 |
| abstract_inverted_index.features. | 174 |
| abstract_inverted_index.intrusion | 57 |
| abstract_inverted_index.malicious | 26 |
| abstract_inverted_index.mechanism | 120 |
| abstract_inverted_index.networks, | 81 |
| abstract_inverted_index.optimized | 243 |
| abstract_inverted_index.practice. | 55 |
| abstract_inverted_index.practices | 27 |
| abstract_inverted_index.redundant | 126 |
| abstract_inverted_index.selection | 115, 140 |
| abstract_inverted_index.solution. | 198 |
| abstract_inverted_index.Chi-Square | 150 |
| abstract_inverted_index.approaches | 147 |
| abstract_inverted_index.challenges | 38 |
| abstract_inverted_index.evaluation | 200 |
| abstract_inverted_index.irrelevant | 124 |
| abstract_inverted_index.population | 189 |
| abstract_inverted_index.preventing | 77 |
| abstract_inverted_index.test-based | 145 |
| abstract_inverted_index.Coefficient | 154 |
| abstract_inverted_index.Correlation | 153 |
| abstract_inverted_index.Information | 158 |
| abstract_inverted_index.IoT-enabled | 80 |
| abstract_inverted_index.Performance | 199 |
| abstract_inverted_index.challenging | 97 |
| abstract_inverted_index.convergence | 195 |
| abstract_inverted_index.performance | 234 |
| abstract_inverted_index.statistical | 144 |
| abstract_inverted_index.susceptible | 24 |
| abstract_inverted_index.techniques. | 228 |
| abstract_inverted_index.Experimental | 220 |
| abstract_inverted_index.cyber-attack | 92 |
| abstract_inverted_index.filter-based | 179 |
| abstract_inverted_index.optimization | 172 |
| abstract_inverted_index.state-of-art | 227 |
| abstract_inverted_index.(IoT)-enabled | 13 |
| abstract_inverted_index.Non-Dominated | 164 |
| abstract_inverted_index.connectivity. | 18 |
| abstract_inverted_index.cyber-attacks | 78 |
| abstract_inverted_index.metaheuristic | 169 |
| abstract_inverted_index.cyber-attacks. | 67 |
| abstract_inverted_index.initialization | 190 |
| abstract_inverted_index.(NSGA-II)-based | 168 |
| abstract_inverted_index.technologically | 1 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5090381393 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I38335241 |
| citation_normalized_percentile.value | 0.99255157 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |