Hybrid multiscale modeling and prediction of cancer cell behavior Article Swipe
Mohammad Hossein Zangooei
,
Jafar Habibi
·
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0183810
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0183810
Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0183810
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183810&type=printable
- OA Status
- gold
- Cited By
- 37
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2748151855
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2748151855Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0183810Digital Object Identifier
- Title
-
Hybrid multiscale modeling and prediction of cancer cell behaviorWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-08-28Full publication date if available
- Authors
-
Mohammad Hossein Zangooei, Jafar HabibiList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0183810Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183810&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183810&type=printableDirect OA link when available
- Concepts
-
Cellular automaton, Computer science, Multiscale modeling, In silico, Artificial intelligence, Machine learning, Bioinformatics, Biology, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
37Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 6, 2022: 7, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2748151855 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0183810 |
| ids.doi | https://doi.org/10.1371/journal.pone.0183810 |
| ids.mag | 2748151855 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/28846712 |
| ids.openalex | https://openalex.org/W2748151855 |
| fwci | 2.3167206 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D017209 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Apoptosis |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D015687 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Cell Hypoxia |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D002465 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Cell Movement |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D049109 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Cell Proliferation |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D003198 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Computer Simulation |
| mesh[5].qualifier_ui | Q000378 |
| mesh[5].descriptor_ui | D066246 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | metabolism |
| mesh[5].descriptor_name | ErbB Receptors |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008954 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Models, Biological |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D009336 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Necrosis |
| mesh[9].qualifier_ui | Q000378 |
| mesh[9].descriptor_ui | D009369 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | metabolism |
| mesh[9].descriptor_name | Neoplasms |
| mesh[10].qualifier_ui | Q000473 |
| mesh[10].descriptor_ui | D009369 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | pathology |
| mesh[10].descriptor_name | Neoplasms |
| mesh[11].qualifier_ui | Q000378 |
| mesh[11].descriptor_ui | D018124 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | metabolism |
| mesh[11].descriptor_name | Receptors, Tumor Necrosis Factor |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D015398 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Signal Transduction |
| mesh[13].qualifier_ui | Q000378 |
| mesh[13].descriptor_ui | D014409 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | metabolism |
| mesh[13].descriptor_name | Tumor Necrosis Factor-alpha |
| mesh[14].qualifier_ui | Q000378 |
| mesh[14].descriptor_ui | D042461 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | metabolism |
| mesh[14].descriptor_name | Vascular Endothelial Growth Factor A |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D017209 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Apoptosis |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D015687 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Cell Hypoxia |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D002465 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Cell Movement |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D049109 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Cell Proliferation |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D003198 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Computer Simulation |
| mesh[20].qualifier_ui | Q000378 |
| mesh[20].descriptor_ui | D066246 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | metabolism |
| mesh[20].descriptor_name | ErbB Receptors |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D006801 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Humans |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D008954 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Models, Biological |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D009336 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Necrosis |
| mesh[24].qualifier_ui | Q000378 |
| mesh[24].descriptor_ui | D009369 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | metabolism |
| mesh[24].descriptor_name | Neoplasms |
| mesh[25].qualifier_ui | Q000473 |
| mesh[25].descriptor_ui | D009369 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | pathology |
| mesh[25].descriptor_name | Neoplasms |
| mesh[26].qualifier_ui | Q000378 |
| mesh[26].descriptor_ui | D018124 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | metabolism |
| mesh[26].descriptor_name | Receptors, Tumor Necrosis Factor |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D015398 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Signal Transduction |
| mesh[28].qualifier_ui | Q000378 |
| mesh[28].descriptor_ui | D014409 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | metabolism |
| mesh[28].descriptor_name | Tumor Necrosis Factor-alpha |
| mesh[29].qualifier_ui | Q000378 |
| mesh[29].descriptor_ui | D042461 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | metabolism |
| mesh[29].descriptor_name | Vascular Endothelial Growth Factor A |
| type | article |
| title | Hybrid multiscale modeling and prediction of cancer cell behavior |
| biblio.issue | 8 |
| biblio.volume | 12 |
| biblio.last_page | e0183810 |
| biblio.first_page | e0183810 |
| topics[0].id | https://openalex.org/T11829 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | Mathematical Biology Tumor Growth |
| topics[1].id | https://openalex.org/T10621 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene Regulatory Network Analysis |
| topics[2].id | https://openalex.org/T10492 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1307 |
| topics[2].subfield.display_name | Cell Biology |
| topics[2].display_name | Microtubule and mitosis dynamics |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C35527583 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7839813232421875 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q189156 |
| concepts[0].display_name | Cellular automaton |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7118338346481323 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C141123601 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6603680849075317 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6935072 |
| concepts[2].display_name | Multiscale modeling |
| concepts[3].id | https://openalex.org/C2775905019 |
| concepts[3].level | 3 |
| concepts[3].score | 0.569958508014679 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192572 |
| concepts[3].display_name | In silico |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4599657654762268 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4022231101989746 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C60644358 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2630642056465149 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[6].display_name | Bioinformatics |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.14733615517616272 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C55493867 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[8].display_name | Biochemistry |
| concepts[9].id | https://openalex.org/C104317684 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[9].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/cellular-automaton |
| keywords[0].score | 0.7839813232421875 |
| keywords[0].display_name | Cellular automaton |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7118338346481323 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/multiscale-modeling |
| keywords[2].score | 0.6603680849075317 |
| keywords[2].display_name | Multiscale modeling |
| keywords[3].id | https://openalex.org/keywords/in-silico |
| keywords[3].score | 0.569958508014679 |
| keywords[3].display_name | In silico |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4599657654762268 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4022231101989746 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/bioinformatics |
| keywords[6].score | 0.2630642056465149 |
| keywords[6].display_name | Bioinformatics |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.14733615517616272 |
| keywords[7].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0183810 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183810&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0183810 |
| locations[1].id | pmid:28846712 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/28846712 |
| locations[2].id | pmh:oai:RePEc:plo:pone00:0183810 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183810 |
| locations[3].id | pmh:oai:doaj.org/article:f4212e4b1ed8491da4ba9ec2f281b4e7 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS ONE, Vol 12, Iss 8, p e0183810 (2017) |
| locations[3].landing_page_url | https://doaj.org/article/f4212e4b1ed8491da4ba9ec2f281b4e7 |
| locations[4].id | pmh:oai:europepmc.org:4485910 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400806 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Europe PMC (PubMed Central) |
| locations[4].source.host_organization | https://openalex.org/I1303153112 |
| locations[4].source.host_organization_name | European Bioinformatics Institute |
| locations[4].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5573302 |
| locations[5].id | pmh:oai:figshare.com:article/5352382 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306400572 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[5].source.host_organization | https://openalex.org/I196829312 |
| locations[5].source.host_organization_name | La Trobe University |
| locations[5].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[5].license | cc-by |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Dataset |
| locations[5].license_id | https://openalex.org/licenses/cc-by |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://figshare.com/articles/dataset/Hybrid_multiscale_modeling_and_prediction_of_cancer_cell_behavior/5352382 |
| locations[6].id | pmh:oai:pubmedcentral.nih.gov:5573302 |
| locations[6].is_oa | True |
| locations[6].source.id | https://openalex.org/S2764455111 |
| locations[6].source.issn | |
| locations[6].source.type | repository |
| locations[6].source.is_oa | False |
| locations[6].source.issn_l | |
| locations[6].source.is_core | False |
| locations[6].source.is_in_doaj | False |
| locations[6].source.display_name | PubMed Central |
| locations[6].source.host_organization | https://openalex.org/I1299303238 |
| locations[6].source.host_organization_name | National Institutes of Health |
| locations[6].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[6].license | cc-by |
| locations[6].pdf_url | |
| locations[6].version | submittedVersion |
| locations[6].raw_type | Text |
| locations[6].license_id | https://openalex.org/licenses/cc-by |
| locations[6].is_accepted | False |
| locations[6].is_published | False |
| locations[6].raw_source_name | |
| locations[6].landing_page_url | http://doi.org/10.1371/journal.pone.0183810 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5057869229 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1471-3584 |
| authorships[0].author.display_name | Mohammad Hossein Zangooei |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I133529467 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Sharif University of Technology, Tehran, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I133529467 |
| authorships[0].institutions[0].ror | https://ror.org/024c2fq17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I133529467 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | Sharif University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohammad Hossein Zangooei |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Engineering, Sharif University of Technology, Tehran, Iran |
| authorships[1].author.id | https://openalex.org/A5042489969 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7485-8083 |
| authorships[1].author.display_name | Jafar Habibi |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I133529467 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Sharif University of Technology, Tehran, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I133529467 |
| authorships[1].institutions[0].ror | https://ror.org/024c2fq17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I133529467 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Sharif University of Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jafar Habibi |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Engineering, Sharif University of Technology, Tehran, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183810&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid multiscale modeling and prediction of cancer cell behavior |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11829 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | Mathematical Biology Tumor Growth |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3209574120, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 37 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 7 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 4 |
| locations_count | 7 |
| best_oa_location.id | doi:10.1371/journal.pone.0183810 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183810&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0183810 |
| primary_location.id | doi:10.1371/journal.pone.0183810 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183810&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0183810 |
| publication_date | 2017-08-28 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2009913017, https://openalex.org/W2515824549, https://openalex.org/W2142171814, https://openalex.org/W2042835353, https://openalex.org/W3149462652, https://openalex.org/W1513303009, https://openalex.org/W2006219063, https://openalex.org/W2015966765, https://openalex.org/W2063605825, https://openalex.org/W1987717176, https://openalex.org/W2094634315, https://openalex.org/W2016111840, https://openalex.org/W1547369459, https://openalex.org/W2099703086, https://openalex.org/W2004612768, https://openalex.org/W96892337, https://openalex.org/W2159084624, https://openalex.org/W2098387795, https://openalex.org/W1974034376, https://openalex.org/W2154718031, https://openalex.org/W2092375071, https://openalex.org/W2169961781, https://openalex.org/W2068887552, https://openalex.org/W1975801476, https://openalex.org/W2156678998, https://openalex.org/W2153630683, https://openalex.org/W2161689979, https://openalex.org/W2123338368, https://openalex.org/W2081084899, https://openalex.org/W2163778004, https://openalex.org/W1979575182, https://openalex.org/W2088003984, https://openalex.org/W2169169493, https://openalex.org/W2073076869, https://openalex.org/W1985678967, https://openalex.org/W2157425630, https://openalex.org/W2014299480, https://openalex.org/W251810509, https://openalex.org/W2120629640, https://openalex.org/W1579143679, https://openalex.org/W2136509648, https://openalex.org/W2317450146, https://openalex.org/W2001620484, https://openalex.org/W2127225632, https://openalex.org/W2075052929, https://openalex.org/W2134648876, https://openalex.org/W2083843631, https://openalex.org/W2086356330, https://openalex.org/W2095900421, https://openalex.org/W2042849303, https://openalex.org/W2088679869, https://openalex.org/W1985345792, https://openalex.org/W2048195900, https://openalex.org/W1990754232, https://openalex.org/W168158090, https://openalex.org/W2106571889, https://openalex.org/W2123669082, https://openalex.org/W1964809585, https://openalex.org/W2066942254, https://openalex.org/W2133856629, https://openalex.org/W2092285406, https://openalex.org/W2150437708, https://openalex.org/W2186040066, https://openalex.org/W1181618588, https://openalex.org/W4234794606, https://openalex.org/W110923901, https://openalex.org/W4205636972, https://openalex.org/W2159884882 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 6, 91 |
| abstract_inverted_index.3D | 35 |
| abstract_inverted_index.To | 62 |
| abstract_inverted_index.by | 90 |
| abstract_inverted_index.in | 29, 55 |
| abstract_inverted_index.is | 70 |
| abstract_inverted_index.of | 10, 22, 41, 65, 77 |
| abstract_inverted_index.to | 17, 85 |
| abstract_inverted_index.we | 4 |
| abstract_inverted_index.Our | 0 |
| abstract_inverted_index.The | 28 |
| abstract_inverted_index.and | 25, 45, 49 |
| abstract_inverted_index.are | 54 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.has | 14, 82 |
| abstract_inverted_index.its | 46 |
| abstract_inverted_index.key | 39 |
| abstract_inverted_index.our | 66 |
| abstract_inverted_index.the | 15, 19, 34, 52, 63, 71, 83 |
| abstract_inverted_index.best | 20, 64 |
| abstract_inverted_index.both | 23 |
| abstract_inverted_index.cell | 12, 79, 87 |
| abstract_inverted_index.good | 56 |
| abstract_inverted_index.show | 50 |
| abstract_inverted_index.term | 5 |
| abstract_inverted_index.that | 33, 51, 81 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.with | 58 |
| abstract_inverted_index.first | 72 |
| abstract_inverted_index.model | 36 |
| abstract_inverted_index.paper | 69 |
| abstract_inverted_index.tumor | 60 |
| abstract_inverted_index.which | 3 |
| abstract_inverted_index.cancer | 11, 42, 78 |
| abstract_inverted_index.hybrid | 7, 73 |
| abstract_inverted_index.model, | 2 |
| abstract_inverted_index.silico | 30 |
| abstract_inverted_index.combine | 18 |
| abstract_inverted_index.growth, | 43 |
| abstract_inverted_index.models. | 27 |
| abstract_inverted_index.predict | 86 |
| abstract_inverted_index.related | 47 |
| abstract_inverted_index.results | 31 |
| abstract_inverted_index.behavior | 80 |
| abstract_inverted_index.dataset. | 93 |
| abstract_inverted_index.discrete | 26 |
| abstract_inverted_index.features | 21, 40 |
| abstract_inverted_index.findings | 53 |
| abstract_inverted_index.indicate | 32 |
| abstract_inverted_index.modeling | 9, 76 |
| abstract_inverted_index.proposed | 1 |
| abstract_inverted_index.vascular | 74 |
| abstract_inverted_index.agreement | 57 |
| abstract_inverted_index.behavior, | 13 |
| abstract_inverted_index.behavior. | 61 |
| abstract_inverted_index.continuum | 24 |
| abstract_inverted_index.potential | 16 |
| abstract_inverted_index.represent | 38 |
| abstract_inverted_index.biological | 59 |
| abstract_inverted_index.capability | 84 |
| abstract_inverted_index.knowledge, | 67 |
| abstract_inverted_index.multiscale | 8, 75 |
| abstract_inverted_index.phenotypes | 88 |
| abstract_inverted_index.individually | 89 |
| abstract_inverted_index.angiogenesis, | 44 |
| abstract_inverted_index.self-generated | 92 |
| abstract_inverted_index.micro-environment | 48 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5057869229, https://openalex.org/A5042489969 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I133529467 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.8817942 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |