Hybrid neural network and statistical forecasting methodology for predictive monitoring and residual useful life estimation in nuclear power plant components Article Swipe
Salvatore Angelo Cancemi
,
M. Angelucci
,
Andrea Chierici
,
Sandro Paci
,
Rosa Lo Frano
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.nucengdes.2025.113900
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.nucengdes.2025.113900
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.nucengdes.2025.113900
- OA Status
- green
- Cited By
- 5
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407353739
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407353739Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.nucengdes.2025.113900Digital Object Identifier
- Title
-
Hybrid neural network and statistical forecasting methodology for predictive monitoring and residual useful life estimation in nuclear power plant componentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-11Full publication date if available
- Authors
-
Salvatore Angelo Cancemi, M. Angelucci, Andrea Chierici, Sandro Paci, Rosa Lo FranoList of authors in order
- Landing page
-
https://doi.org/10.1016/j.nucengdes.2025.113900Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11568/1307667Direct OA link when available
- Concepts
-
Residual, Nuclear power plant, Artificial neural network, Nuclear power, Reliability engineering, Predictive power, Engineering, Power (physics), Nuclear engineering, Computer science, Artificial intelligence, Nuclear physics, Physics, Algorithm, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407353739 |
|---|---|
| doi | https://doi.org/10.1016/j.nucengdes.2025.113900 |
| ids.doi | https://doi.org/10.1016/j.nucengdes.2025.113900 |
| ids.openalex | https://openalex.org/W4407353739 |
| fwci | 18.58386628 |
| type | article |
| title | Hybrid neural network and statistical forecasting methodology for predictive monitoring and residual useful life estimation in nuclear power plant components |
| biblio.issue | |
| biblio.volume | 433 |
| biblio.last_page | 113900 |
| biblio.first_page | 113900 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T12169 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9729999899864197 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Non-Destructive Testing Techniques |
| topics[2].id | https://openalex.org/T13891 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9649999737739563 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Engineering Diagnostics and Reliability |
| is_xpac | False |
| apc_list.value | 2670 |
| apc_list.currency | USD |
| apc_list.value_usd | 2670 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155512373 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8300451040267944 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[0].display_name | Residual |
| concepts[1].id | https://openalex.org/C2779979336 |
| concepts[1].level | 2 |
| concepts[1].score | 0.758812665939331 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q134447 |
| concepts[1].display_name | Nuclear power plant |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6806418895721436 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C513653683 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5344708561897278 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12739 |
| concepts[3].display_name | Nuclear power |
| concepts[4].id | https://openalex.org/C200601418 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5324479341506958 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[4].display_name | Reliability engineering |
| concepts[5].id | https://openalex.org/C2778136018 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5186166763305664 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10350689 |
| concepts[5].display_name | Predictive power |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4459293782711029 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C163258240 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4358365833759308 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[7].display_name | Power (physics) |
| concepts[8].id | https://openalex.org/C116915560 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4043351709842682 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q83504 |
| concepts[8].display_name | Nuclear engineering |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.37047046422958374 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2785135507583618 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C185544564 |
| concepts[11].level | 1 |
| concepts[11].score | 0.16890046000480652 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[11].display_name | Nuclear physics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.08728429675102234 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07655498385429382 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/residual |
| keywords[0].score | 0.8300451040267944 |
| keywords[0].display_name | Residual |
| keywords[1].id | https://openalex.org/keywords/nuclear-power-plant |
| keywords[1].score | 0.758812665939331 |
| keywords[1].display_name | Nuclear power plant |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6806418895721436 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/nuclear-power |
| keywords[3].score | 0.5344708561897278 |
| keywords[3].display_name | Nuclear power |
| keywords[4].id | https://openalex.org/keywords/reliability-engineering |
| keywords[4].score | 0.5324479341506958 |
| keywords[4].display_name | Reliability engineering |
| keywords[5].id | https://openalex.org/keywords/predictive-power |
| keywords[5].score | 0.5186166763305664 |
| keywords[5].display_name | Predictive power |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.4459293782711029 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/power |
| keywords[7].score | 0.4358365833759308 |
| keywords[7].display_name | Power (physics) |
| keywords[8].id | https://openalex.org/keywords/nuclear-engineering |
| keywords[8].score | 0.4043351709842682 |
| keywords[8].display_name | Nuclear engineering |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.37047046422958374 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2785135507583618 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/nuclear-physics |
| keywords[11].score | 0.16890046000480652 |
| keywords[11].display_name | Nuclear physics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.08728429675102234 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.07655498385429382 |
| keywords[13].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1016/j.nucengdes.2025.113900 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S102681701 |
| locations[0].source.issn | 0029-5493, 1872-759X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0029-5493 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Nuclear Engineering and Design |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nuclear Engineering and Design |
| locations[0].landing_page_url | https://doi.org/10.1016/j.nucengdes.2025.113900 |
| locations[1].id | pmh:oai:arpi.unipi.it:11568/1307667 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4377196265 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | CINECA IRIS Institutial research information system (University of Pisa) |
| locations[1].source.host_organization | https://openalex.org/I108290504 |
| locations[1].source.host_organization_name | University of Pisa |
| locations[1].source.host_organization_lineage | https://openalex.org/I108290504 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/11568/1307667 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064116230 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8368-6786 |
| authorships[0].author.display_name | Salvatore Angelo Cancemi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | S.A. Cancemi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5088178624 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8104-3218 |
| authorships[1].author.display_name | M. Angelucci |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | M. Angelucci |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047567623 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1543-2047 |
| authorships[2].author.display_name | Andrea Chierici |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | A. Chierici |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015860959 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9134-6976 |
| authorships[3].author.display_name | Sandro Paci |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | S. Paci |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055430607 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5743-174X |
| authorships[4].author.display_name | Rosa Lo Frano |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | R. Lo Frano |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/11568/1307667 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid neural network and statistical forecasting methodology for predictive monitoring and residual useful life estimation in nuclear power plant components |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W2560215812, https://openalex.org/W2949601986, https://openalex.org/W2788972299, https://openalex.org/W2521347458, https://openalex.org/W2498789492, https://openalex.org/W2729981612, https://openalex.org/W4233449973, https://openalex.org/W2925692864, https://openalex.org/W2768526084, https://openalex.org/W151988857 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arpi.unipi.it:11568/1307667 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196265 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | CINECA IRIS Institutial research information system (University of Pisa) |
| best_oa_location.source.host_organization | https://openalex.org/I108290504 |
| best_oa_location.source.host_organization_name | University of Pisa |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I108290504 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://hdl.handle.net/11568/1307667 |
| primary_location.id | doi:10.1016/j.nucengdes.2025.113900 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S102681701 |
| primary_location.source.issn | 0029-5493, 1872-759X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0029-5493 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Nuclear Engineering and Design |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nuclear Engineering and Design |
| primary_location.landing_page_url | https://doi.org/10.1016/j.nucengdes.2025.113900 |
| publication_date | 2025-02-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3100931673, https://openalex.org/W3151990801, https://openalex.org/W6848753219, https://openalex.org/W4385525790, https://openalex.org/W2915034955, https://openalex.org/W2070986256, https://openalex.org/W4323928446, https://openalex.org/W4400584609, https://openalex.org/W2066867439, https://openalex.org/W1532680705, https://openalex.org/W6860116203, https://openalex.org/W6679595960, https://openalex.org/W2074987240, https://openalex.org/W3111700014, https://openalex.org/W2911767333, https://openalex.org/W6759638512, https://openalex.org/W3028715102, https://openalex.org/W3048997617, https://openalex.org/W1988580225, https://openalex.org/W6675354045, https://openalex.org/W4213334663, https://openalex.org/W2109606373, https://openalex.org/W3096646366, https://openalex.org/W4399482629, https://openalex.org/W4250857377, https://openalex.org/W2101234009, https://openalex.org/W4390115860, https://openalex.org/W2976269899 |
| referenced_works_count | 28 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.97954683 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |