Hybrid Neural Network Modeling of Mechanical Alloying Process Parameters and Alloy Performance Using Forward and Reverse Mapping Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/eng2.70344
Mechanical alloying (MA) process synthesizes a nanostructured Ti‐Mg‐Zr ternary alloy suitable for biomedical applications. The desirable characteristics of titanium, magnesium, and zirconium (such as high biocompatibility, corrosion resistance and low density) enable the development of alloys with minimal magnetic resonance imaging (MRI) artifacts. Retaining the nanostructure (alloy performances such as crystallite size CS and lattice strain LS) in Ti‐Mg‐Zr alloys is influenced by MA parameters (milling speed: MS, duration: MD, and ball‐to‐powder‐weight ratio: BPR). The present work establishes forward and reverse modeling between the MA parameters and alloy performance using neural networks such as artificial bee colony (ABC‐NN), backpropagation (BPNN), and genetic algorithm (GA‐NN). Forward modeling predicts alloy performances from known MA parameters, while reverse modeling estimates the MA parameters for the desired alloy performances. A dataset of 1,000 samples was generated using empirical regression equations and was supplied to networks in batch mode. A detailed parametric study was conducted to optimize network parameters. The optimized network parameters resulted in reduced mean squared error (MSE) corresponding to forward and reverse modeling tasks equal to 0.0021 and 0.0065 for ABC‐NN, 0.0056 and 0.0097 for BPNN, and 0.0034 and 0.0076 for GA‐NN, respectively. The trained networks are tested against 10 randomly generated experimental cases for forward and reverse predictions, resulting in 3.41% and 3.55% for BPNN, 3.24% and 3.30% for ABC‐NN, and 3.30% and 3.33% for GA‐NN, respectively. The ABC‐NN predictions help industry personnel to scale up the synthesis of nanostructured Ti‐Mg‐Zr alloy for permanent implants requiring regular MRI examinations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/eng2.70344
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70344
- OA Status
- gold
- References
- 84
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414102853
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414102853Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/eng2.70344Digital Object Identifier
- Title
-
Hybrid Neural Network Modeling of Mechanical Alloying Process Parameters and Alloy Performance Using Forward and Reverse MappingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-01Full publication date if available
- Authors
-
S. Parameshwara, Girisha Kanuvanahalli Bettaiah, Manjunath Patel Gowdru Chandrashekarappa, N.B. Pradeep, Oğuzhan Der, Chithirai Pon SelvanList of authors in order
- Landing page
-
https://doi.org/10.1002/eng2.70344Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70344Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70344Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
84Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414102853 |
|---|---|
| doi | https://doi.org/10.1002/eng2.70344 |
| ids.doi | https://doi.org/10.1002/eng2.70344 |
| ids.openalex | https://openalex.org/W4414102853 |
| fwci | 0.0 |
| type | article |
| title | Hybrid Neural Network Modeling of Mechanical Alloying Process Parameters and Alloy Performance Using Forward and Reverse Mapping |
| biblio.issue | 9 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11442 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Titanium Alloys Microstructure and Properties |
| topics[1].id | https://openalex.org/T10705 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Additive Manufacturing Materials and Processes |
| topics[2].id | https://openalex.org/T10377 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Metal and Thin Film Mechanics |
| is_xpac | False |
| apc_list.value | 1650 |
| apc_list.currency | USD |
| apc_list.value_usd | 1650 |
| apc_paid.value | 1650 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1650 |
| language | en |
| locations[0].id | doi:10.1002/eng2.70344 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210199257 |
| locations[0].source.issn | 2577-8196 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2577-8196 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Engineering Reports |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70344 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Engineering Reports |
| locations[0].landing_page_url | https://doi.org/10.1002/eng2.70344 |
| locations[1].id | pmh:oai:doaj.org/article:9d447af3575042f7869f5307b262b148 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Engineering Reports, Vol 7, Iss 9, Pp n/a-n/a (2025) |
| locations[1].landing_page_url | https://doaj.org/article/9d447af3575042f7869f5307b262b148 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5012658158 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | S. Parameshwara |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I65674248 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, JNN College of Engineering, Shivamogga, Visvesvaraya Technological University, Belagavi, India |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Mechanical Engineering, BGS Institute of Technology Adichunchanagiri University Mandya India |
| authorships[0].affiliations[2].raw_affiliation_string | Department of Mechanical Engineering, BGS Institute of Technology, Adichunchanagiri University, Mandya, India |
| authorships[0].institutions[0].id | https://openalex.org/I65674248 |
| authorships[0].institutions[0].ror | https://ror.org/00ha14p11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I65674248 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Visvesvaraya Technological University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Parameshwara Siddalingaiah |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Mechanical Engineering, BGS Institute of Technology Adichunchanagiri University Mandya India, Department of Mechanical Engineering, BGS Institute of Technology, Adichunchanagiri University, Mandya, India, Department of Mechanical Engineering, JNN College of Engineering, Shivamogga, Visvesvaraya Technological University, Belagavi, India |
| authorships[1].author.id | https://openalex.org/A5119584334 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Girisha Kanuvanahalli Bettaiah |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, BGS Institute of Technology Adichunchanagiri University Mandya India |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Mechanical Engineering, BGS Institute of Technology, Adichunchanagiri University, Mandya, India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Girisha Kanuvanahalli Bettaiah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mechanical Engineering, BGS Institute of Technology Adichunchanagiri University Mandya India, Department of Mechanical Engineering, BGS Institute of Technology, Adichunchanagiri University, Mandya, India |
| authorships[2].author.id | https://openalex.org/A5080513056 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9340-7464 |
| authorships[2].author.display_name | Manjunath Patel Gowdru Chandrashekarappa |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I65674248 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Sahyadri College of Engineering & Management, Mangaluru Visvesvaraya Technological University Belagavi India |
| authorships[2].institutions[0].id | https://openalex.org/I65674248 |
| authorships[2].institutions[0].ror | https://ror.org/00ha14p11 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I65674248 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Visvesvaraya Technological University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Manjunath Patel Gowdru Chandrashekarappa |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Mechanical Engineering, Sahyadri College of Engineering & Management, Mangaluru Visvesvaraya Technological University Belagavi India |
| authorships[3].author.id | https://openalex.org/A5047746961 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | N.B. Pradeep |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I65674248 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, JNN College of Engineering, Shivamogga, Visvesvaraya Technological University, Belagavi, India |
| authorships[3].institutions[0].id | https://openalex.org/I65674248 |
| authorships[3].institutions[0].ror | https://ror.org/00ha14p11 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I65674248 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Visvesvaraya Technological University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pradeep Navilehal Basavarajappa |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mechanical Engineering, JNN College of Engineering, Shivamogga, Visvesvaraya Technological University, Belagavi, India |
| authorships[4].author.id | https://openalex.org/A5001718201 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5679-2594 |
| authorships[4].author.display_name | Oğuzhan Der |
| authorships[4].countries | TR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3133171086 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Marine Engineering, Maritime Faculty, Bandirma Onyedi Eylul University, Balikesir, Turkey |
| authorships[4].institutions[0].id | https://openalex.org/I3133171086 |
| authorships[4].institutions[0].ror | https://ror.org/02mtr7g38 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I3133171086 |
| authorships[4].institutions[0].country_code | TR |
| authorships[4].institutions[0].display_name | Bandırma Onyedi Eylül University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Oguzhan Der |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Marine Engineering, Maritime Faculty, Bandirma Onyedi Eylul University, Balikesir, Turkey |
| authorships[5].author.id | https://openalex.org/A5023858701 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9295-3340 |
| authorships[5].author.display_name | Chithirai Pon Selvan |
| authorships[5].countries | AE, AU |
| authorships[5].affiliations[0].raw_affiliation_string | School of Science and Engineering Curtin University Dubai Dubai UAE |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I132806614, https://openalex.org/I205640436 |
| authorships[5].affiliations[1].raw_affiliation_string | School of Science and Engineering, Curtin University Dubai, Dubai, UAE |
| authorships[5].institutions[0].id | https://openalex.org/I132806614 |
| authorships[5].institutions[0].ror | https://ror.org/05h0z7c09 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I132806614 |
| authorships[5].institutions[0].country_code | AE |
| authorships[5].institutions[0].display_name | University of Dubai |
| authorships[5].institutions[1].id | https://openalex.org/I205640436 |
| authorships[5].institutions[1].ror | https://ror.org/02n415q13 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I205640436 |
| authorships[5].institutions[1].country_code | AU |
| authorships[5].institutions[1].display_name | Curtin University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chithirai Pon Selvan |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | School of Science and Engineering Curtin University Dubai Dubai UAE, School of Science and Engineering, Curtin University Dubai, Dubai, UAE |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70344 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid Neural Network Modeling of Mechanical Alloying Process Parameters and Alloy Performance Using Forward and Reverse Mapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T11442 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Titanium Alloys Microstructure and Properties |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W4404995717, https://openalex.org/W2016187641, https://openalex.org/W4404725684, https://openalex.org/W4413159334, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W4409278740, https://openalex.org/W2898370298, https://openalex.org/W4410118003 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1002/eng2.70344 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210199257 |
| best_oa_location.source.issn | 2577-8196 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2577-8196 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Engineering Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70344 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Engineering Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1002/eng2.70344 |
| primary_location.id | doi:10.1002/eng2.70344 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210199257 |
| primary_location.source.issn | 2577-8196 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2577-8196 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Engineering Reports |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70344 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Engineering Reports |
| primary_location.landing_page_url | https://doi.org/10.1002/eng2.70344 |
| publication_date | 2025-09-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4281848030, https://openalex.org/W2225649395, https://openalex.org/W4399391694, https://openalex.org/W3165152177, https://openalex.org/W2008158617, https://openalex.org/W3153878179, https://openalex.org/W2942008644, https://openalex.org/W2245846013, https://openalex.org/W4281652286, https://openalex.org/W4401886490, https://openalex.org/W4409036217, https://openalex.org/W2028749039, https://openalex.org/W4311292261, https://openalex.org/W1978192072, https://openalex.org/W2027490130, https://openalex.org/W2035345366, https://openalex.org/W3127565296, https://openalex.org/W4220925901, https://openalex.org/W2262696439, https://openalex.org/W2626288471, https://openalex.org/W4214653918, https://openalex.org/W4317206927, https://openalex.org/W4401732629, https://openalex.org/W3179755428, https://openalex.org/W3204037470, https://openalex.org/W4206644594, https://openalex.org/W4401671310, https://openalex.org/W4390768550, https://openalex.org/W4324142429, https://openalex.org/W2077540031, https://openalex.org/W3095863531, https://openalex.org/W4220668567, https://openalex.org/W4283212038, https://openalex.org/W4282966553, https://openalex.org/W3209340886, https://openalex.org/W3206739396, https://openalex.org/W3135551422, https://openalex.org/W3150697952, https://openalex.org/W3129738317, https://openalex.org/W2007098000, https://openalex.org/W2042739566, https://openalex.org/W3012026923, https://openalex.org/W2017816634, https://openalex.org/W2079143456, https://openalex.org/W4309288251, https://openalex.org/W3164570866, https://openalex.org/W4309928806, https://openalex.org/W4388814208, https://openalex.org/W4398161748, https://openalex.org/W4402903074, https://openalex.org/W2109448822, https://openalex.org/W1529965533, https://openalex.org/W2602420801, https://openalex.org/W4210479225, https://openalex.org/W1977412026, https://openalex.org/W2554288293, https://openalex.org/W4400120952, https://openalex.org/W4248781261, https://openalex.org/W2886404095, https://openalex.org/W3217171414, https://openalex.org/W4285098399, https://openalex.org/W2024634239, https://openalex.org/W4411133662, https://openalex.org/W4409637302, https://openalex.org/W2584258643, https://openalex.org/W4306407124, https://openalex.org/W4226055837, https://openalex.org/W4368404899, https://openalex.org/W3033440596, https://openalex.org/W4387971873, https://openalex.org/W3063913079, https://openalex.org/W2099585388, https://openalex.org/W2078808761, https://openalex.org/W3125891883, https://openalex.org/W4410946896, https://openalex.org/W4408501508, https://openalex.org/W4382583035, https://openalex.org/W4404894372, https://openalex.org/W4380263940, https://openalex.org/W2002011878, https://openalex.org/W2669031189, https://openalex.org/W2511972260, https://openalex.org/W4402147661, https://openalex.org/W4393318778 |
| referenced_works_count | 84 |
| abstract_inverted_index.A | 126, 145 |
| abstract_inverted_index.a | 6 |
| abstract_inverted_index.10 | 198 |
| abstract_inverted_index.CS | 53 |
| abstract_inverted_index.MA | 64, 85, 112, 119 |
| abstract_inverted_index.as | 24, 50, 94 |
| abstract_inverted_index.by | 63 |
| abstract_inverted_index.in | 58, 142, 160, 209 |
| abstract_inverted_index.is | 61 |
| abstract_inverted_index.of | 18, 35, 128, 238 |
| abstract_inverted_index.to | 140, 151, 167, 174, 233 |
| abstract_inverted_index.up | 235 |
| abstract_inverted_index.LS) | 57 |
| abstract_inverted_index.MD, | 70 |
| abstract_inverted_index.MRI | 247 |
| abstract_inverted_index.MS, | 68 |
| abstract_inverted_index.The | 15, 75, 155, 192, 227 |
| abstract_inverted_index.and | 21, 29, 54, 71, 80, 87, 101, 137, 169, 176, 181, 185, 187, 205, 211, 216, 220, 222 |
| abstract_inverted_index.are | 195 |
| abstract_inverted_index.bee | 96 |
| abstract_inverted_index.for | 12, 121, 178, 183, 189, 203, 213, 218, 224, 242 |
| abstract_inverted_index.low | 30 |
| abstract_inverted_index.the | 33, 45, 84, 118, 122, 236 |
| abstract_inverted_index.was | 131, 138, 149 |
| abstract_inverted_index.(MA) | 3 |
| abstract_inverted_index.from | 110 |
| abstract_inverted_index.help | 230 |
| abstract_inverted_index.high | 25 |
| abstract_inverted_index.mean | 162 |
| abstract_inverted_index.size | 52 |
| abstract_inverted_index.such | 49, 93 |
| abstract_inverted_index.with | 37 |
| abstract_inverted_index.work | 77 |
| abstract_inverted_index.(MRI) | 42 |
| abstract_inverted_index.(MSE) | 165 |
| abstract_inverted_index.(such | 23 |
| abstract_inverted_index.1,000 | 129 |
| abstract_inverted_index.3.24% | 215 |
| abstract_inverted_index.3.30% | 217, 221 |
| abstract_inverted_index.3.33% | 223 |
| abstract_inverted_index.3.41% | 210 |
| abstract_inverted_index.3.55% | 212 |
| abstract_inverted_index.BPNN, | 184, 214 |
| abstract_inverted_index.BPR). | 74 |
| abstract_inverted_index.alloy | 10, 88, 108, 124, 241 |
| abstract_inverted_index.batch | 143 |
| abstract_inverted_index.cases | 202 |
| abstract_inverted_index.equal | 173 |
| abstract_inverted_index.error | 164 |
| abstract_inverted_index.known | 111 |
| abstract_inverted_index.mode. | 144 |
| abstract_inverted_index.scale | 234 |
| abstract_inverted_index.study | 148 |
| abstract_inverted_index.tasks | 172 |
| abstract_inverted_index.using | 90, 133 |
| abstract_inverted_index.while | 114 |
| abstract_inverted_index.(alloy | 47 |
| abstract_inverted_index.0.0021 | 175 |
| abstract_inverted_index.0.0034 | 186 |
| abstract_inverted_index.0.0056 | 180 |
| abstract_inverted_index.0.0065 | 177 |
| abstract_inverted_index.0.0076 | 188 |
| abstract_inverted_index.0.0097 | 182 |
| abstract_inverted_index.alloys | 36, 60 |
| abstract_inverted_index.colony | 97 |
| abstract_inverted_index.enable | 32 |
| abstract_inverted_index.neural | 91 |
| abstract_inverted_index.ratio: | 73 |
| abstract_inverted_index.speed: | 67 |
| abstract_inverted_index.strain | 56 |
| abstract_inverted_index.tested | 196 |
| abstract_inverted_index.(BPNN), | 100 |
| abstract_inverted_index.Forward | 105 |
| abstract_inverted_index.against | 197 |
| abstract_inverted_index.between | 83 |
| abstract_inverted_index.dataset | 127 |
| abstract_inverted_index.desired | 123 |
| abstract_inverted_index.forward | 79, 168, 204 |
| abstract_inverted_index.genetic | 102 |
| abstract_inverted_index.imaging | 41 |
| abstract_inverted_index.lattice | 55 |
| abstract_inverted_index.minimal | 38 |
| abstract_inverted_index.network | 153, 157 |
| abstract_inverted_index.present | 76 |
| abstract_inverted_index.process | 4 |
| abstract_inverted_index.reduced | 161 |
| abstract_inverted_index.regular | 246 |
| abstract_inverted_index.reverse | 81, 115, 170, 206 |
| abstract_inverted_index.samples | 130 |
| abstract_inverted_index.squared | 163 |
| abstract_inverted_index.ternary | 9 |
| abstract_inverted_index.trained | 193 |
| abstract_inverted_index.(milling | 66 |
| abstract_inverted_index.ABC‐NN | 228 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.GA‐NN, | 190, 225 |
| abstract_inverted_index.alloying | 2 |
| abstract_inverted_index.density) | 31 |
| abstract_inverted_index.detailed | 146 |
| abstract_inverted_index.implants | 244 |
| abstract_inverted_index.industry | 231 |
| abstract_inverted_index.magnetic | 39 |
| abstract_inverted_index.modeling | 82, 106, 116, 171 |
| abstract_inverted_index.networks | 92, 141, 194 |
| abstract_inverted_index.optimize | 152 |
| abstract_inverted_index.predicts | 107 |
| abstract_inverted_index.randomly | 199 |
| abstract_inverted_index.resulted | 159 |
| abstract_inverted_index.suitable | 11 |
| abstract_inverted_index.supplied | 139 |
| abstract_inverted_index.ABC‐NN, | 179, 219 |
| abstract_inverted_index.Retaining | 44 |
| abstract_inverted_index.algorithm | 103 |
| abstract_inverted_index.conducted | 150 |
| abstract_inverted_index.corrosion | 27 |
| abstract_inverted_index.desirable | 16 |
| abstract_inverted_index.duration: | 69 |
| abstract_inverted_index.empirical | 134 |
| abstract_inverted_index.equations | 136 |
| abstract_inverted_index.estimates | 117 |
| abstract_inverted_index.generated | 132, 200 |
| abstract_inverted_index.optimized | 156 |
| abstract_inverted_index.permanent | 243 |
| abstract_inverted_index.personnel | 232 |
| abstract_inverted_index.requiring | 245 |
| abstract_inverted_index.resonance | 40 |
| abstract_inverted_index.resulting | 208 |
| abstract_inverted_index.synthesis | 237 |
| abstract_inverted_index.titanium, | 19 |
| abstract_inverted_index.zirconium | 22 |
| abstract_inverted_index.(GA‐NN). | 104 |
| abstract_inverted_index.Mechanical | 1 |
| abstract_inverted_index.artifacts. | 43 |
| abstract_inverted_index.artificial | 95 |
| abstract_inverted_index.biomedical | 13 |
| abstract_inverted_index.influenced | 62 |
| abstract_inverted_index.magnesium, | 20 |
| abstract_inverted_index.parameters | 65, 86, 120, 158 |
| abstract_inverted_index.parametric | 147 |
| abstract_inverted_index.regression | 135 |
| abstract_inverted_index.resistance | 28 |
| abstract_inverted_index.(ABC‐NN), | 98 |
| abstract_inverted_index.crystallite | 51 |
| abstract_inverted_index.development | 34 |
| abstract_inverted_index.establishes | 78 |
| abstract_inverted_index.parameters, | 113 |
| abstract_inverted_index.parameters. | 154 |
| abstract_inverted_index.performance | 89 |
| abstract_inverted_index.predictions | 229 |
| abstract_inverted_index.synthesizes | 5 |
| abstract_inverted_index.Ti‐Mg‐Zr | 8, 59, 240 |
| abstract_inverted_index.experimental | 201 |
| abstract_inverted_index.performances | 48, 109 |
| abstract_inverted_index.predictions, | 207 |
| abstract_inverted_index.applications. | 14 |
| abstract_inverted_index.corresponding | 166 |
| abstract_inverted_index.examinations. | 248 |
| abstract_inverted_index.nanostructure | 46 |
| abstract_inverted_index.performances. | 125 |
| abstract_inverted_index.respectively. | 191, 226 |
| abstract_inverted_index.nanostructured | 7, 239 |
| abstract_inverted_index.backpropagation | 99 |
| abstract_inverted_index.characteristics | 17 |
| abstract_inverted_index.biocompatibility, | 26 |
| abstract_inverted_index.ball‐to‐powder‐weight | 72 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5023858701, https://openalex.org/A5012658158, https://openalex.org/A5080513056 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I132806614, https://openalex.org/I205640436, https://openalex.org/I65674248 |
| citation_normalized_percentile.value | 0.38694335 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |