Hybrid Optimization-Based Robust Watermarking Using Denoising Convolutional Neural Network Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-1055534/v1
Colour images have been widely used in many aspects of life; however, copyright violation issues related to these images motivate research efforts. This paper aims to develop an enhanced watermarking algorithm for producing a watermarked image using hybrid optimisation with high imperceptibility and robustness. The algorithm is based on spatial and transform domains and begins by embedding multiple secret marks into cover media using an optimal scaling factor. The multi-type mark contributes an additional level of authenticity to the proposed algorithm. Furthermore, the marked image is encrypted using an improved encryption scheme, and the denoising convolutional neural network (DnCNN) is employed to enhance the robustness of the proposed algorithm. The results reveal that the proposed watermarking algorithm yields low computational overhead, excellent watermark capacity, imperceptibility, and robustness to common filtering attacks. Moreover, the comparison shows that the proposed algorithm outperforms other competing methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-1055534/v1
- https://www.researchsquare.com/article/rs-1055534/latest.pdf
- OA Status
- green
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3214407794
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3214407794Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-1055534/v1Digital Object Identifier
- Title
-
Hybrid Optimization-Based Robust Watermarking Using Denoising Convolutional Neural NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-16Full publication date if available
- Authors
-
Dhiran Kumar Mahto, Amit Prakash SinghList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-1055534/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-1055534/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-1055534/latest.pdfDirect OA link when available
- Concepts
-
Digital watermarking, Robustness (evolution), Watermark, Computer science, Convolutional neural network, Embedding, Encryption, Artificial intelligence, Algorithm, Noise reduction, Image (mathematics), Pattern recognition (psychology), Computer network, Gene, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3214407794 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-1055534/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-1055534/v1 |
| ids.mag | 3214407794 |
| ids.openalex | https://openalex.org/W3214407794 |
| fwci | 0.0 |
| type | preprint |
| title | Hybrid Optimization-Based Robust Watermarking Using Denoising Convolutional Neural Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10388 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Steganography and Watermarking Techniques |
| topics[1].id | https://openalex.org/T12707 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Vehicle License Plate Recognition |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9588000178337097 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150817343 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8629587888717651 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q875932 |
| concepts[0].display_name | Digital watermarking |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8490855097770691 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C164112704 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7677194476127625 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7974348 |
| concepts[2].display_name | Watermark |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6990785002708435 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6542354822158813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C41608201 |
| concepts[5].level | 2 |
| concepts[5].score | 0.590143620967865 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[5].display_name | Embedding |
| concepts[6].id | https://openalex.org/C148730421 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5875195264816284 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141090 |
| concepts[6].display_name | Encryption |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5172458291053772 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44235771894454956 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C163294075 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42595499753952026 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[9].display_name | Noise reduction |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.40184277296066284 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.37524446845054626 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08003386855125427 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/digital-watermarking |
| keywords[0].score | 0.8629587888717651 |
| keywords[0].display_name | Digital watermarking |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.8490855097770691 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/watermark |
| keywords[2].score | 0.7677194476127625 |
| keywords[2].display_name | Watermark |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6990785002708435 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.6542354822158813 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/embedding |
| keywords[5].score | 0.590143620967865 |
| keywords[5].display_name | Embedding |
| keywords[6].id | https://openalex.org/keywords/encryption |
| keywords[6].score | 0.5875195264816284 |
| keywords[6].display_name | Encryption |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5172458291053772 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.44235771894454956 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/noise-reduction |
| keywords[9].score | 0.42595499753952026 |
| keywords[9].display_name | Noise reduction |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.40184277296066284 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.37524446845054626 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/computer-network |
| keywords[12].score | 0.08003386855125427 |
| keywords[12].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-1055534/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-1055534/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-1055534/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5109576229 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dhiran Kumar Mahto |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I11793825 |
| authorships[0].affiliations[0].raw_affiliation_string | NIT Patna: National Institute of Technology Patna |
| authorships[0].institutions[0].id | https://openalex.org/I11793825 |
| authorships[0].institutions[0].ror | https://ror.org/056wyhh33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I11793825, https://openalex.org/I4210152752 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | National Institute of Technology Patna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dhiran Kumar Mahto |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | NIT Patna: National Institute of Technology Patna |
| authorships[1].author.id | https://openalex.org/A5008002283 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8675-6903 |
| authorships[1].author.display_name | Amit Prakash Singh |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I11793825 |
| authorships[1].affiliations[0].raw_affiliation_string | NIT Patna: National Institute of Technology Patna |
| authorships[1].institutions[0].id | https://openalex.org/I11793825 |
| authorships[1].institutions[0].ror | https://ror.org/056wyhh33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I11793825, https://openalex.org/I4210152752 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | National Institute of Technology Patna |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Amit Singh |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | NIT Patna: National Institute of Technology Patna |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-1055534/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid Optimization-Based Robust Watermarking Using Denoising Convolutional Neural Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10388 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Steganography and Watermarking Techniques |
| related_works | https://openalex.org/W2137394636, https://openalex.org/W2358993821, https://openalex.org/W1559740347, https://openalex.org/W1516446231, https://openalex.org/W2098152888, https://openalex.org/W2040356834, https://openalex.org/W2385289568, https://openalex.org/W2381486749, https://openalex.org/W2183032046, https://openalex.org/W1514507288 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-1055534/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-1055534/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1055534/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-1055534/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-1055534/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1055534/v1 |
| publication_date | 2021-11-16 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W4200399832, https://openalex.org/W3082349461, https://openalex.org/W4210818019, https://openalex.org/W944377494, https://openalex.org/W4255937722, https://openalex.org/W3128723629, https://openalex.org/W2910225346, https://openalex.org/W3119235732, https://openalex.org/W2777186602, https://openalex.org/W2971988296, https://openalex.org/W3016560835, https://openalex.org/W2908187773, https://openalex.org/W2963132387, https://openalex.org/W3089007946, https://openalex.org/W3123819776, https://openalex.org/W3177191614, https://openalex.org/W2889174623, https://openalex.org/W3033634833, https://openalex.org/W2936564760, https://openalex.org/W2972031828, https://openalex.org/W3092600322, https://openalex.org/W3194816012, https://openalex.org/W2317724845, https://openalex.org/W3131742572, https://openalex.org/W3135752483, https://openalex.org/W3028710606, https://openalex.org/W2573437058 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 34 |
| abstract_inverted_index.an | 28, 65, 73, 89 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.in | 7 |
| abstract_inverted_index.is | 47, 86, 100 |
| abstract_inverted_index.of | 10, 76, 106 |
| abstract_inverted_index.on | 49 |
| abstract_inverted_index.to | 17, 26, 78, 102, 128 |
| abstract_inverted_index.The | 45, 69, 110 |
| abstract_inverted_index.and | 43, 51, 54, 93, 126 |
| abstract_inverted_index.for | 32 |
| abstract_inverted_index.low | 119 |
| abstract_inverted_index.the | 79, 83, 94, 104, 107, 114, 133, 137 |
| abstract_inverted_index.This | 23 |
| abstract_inverted_index.aims | 25 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.high | 41 |
| abstract_inverted_index.into | 61 |
| abstract_inverted_index.many | 8 |
| abstract_inverted_index.mark | 71 |
| abstract_inverted_index.that | 113, 136 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.with | 40 |
| abstract_inverted_index.based | 48 |
| abstract_inverted_index.cover | 62 |
| abstract_inverted_index.image | 36, 85 |
| abstract_inverted_index.level | 75 |
| abstract_inverted_index.life; | 11 |
| abstract_inverted_index.marks | 60 |
| abstract_inverted_index.media | 63 |
| abstract_inverted_index.other | 141 |
| abstract_inverted_index.paper | 24 |
| abstract_inverted_index.shows | 135 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.using | 37, 64, 88 |
| abstract_inverted_index.Colour | 1 |
| abstract_inverted_index.begins | 55 |
| abstract_inverted_index.common | 129 |
| abstract_inverted_index.hybrid | 38 |
| abstract_inverted_index.images | 2, 19 |
| abstract_inverted_index.issues | 15 |
| abstract_inverted_index.marked | 84 |
| abstract_inverted_index.neural | 97 |
| abstract_inverted_index.reveal | 112 |
| abstract_inverted_index.secret | 59 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.yields | 118 |
| abstract_inverted_index.(DnCNN) | 99 |
| abstract_inverted_index.aspects | 9 |
| abstract_inverted_index.develop | 27 |
| abstract_inverted_index.domains | 53 |
| abstract_inverted_index.enhance | 103 |
| abstract_inverted_index.factor. | 68 |
| abstract_inverted_index.network | 98 |
| abstract_inverted_index.optimal | 66 |
| abstract_inverted_index.related | 16 |
| abstract_inverted_index.results | 111 |
| abstract_inverted_index.scaling | 67 |
| abstract_inverted_index.scheme, | 92 |
| abstract_inverted_index.spatial | 50 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.attacks. | 131 |
| abstract_inverted_index.efforts. | 22 |
| abstract_inverted_index.employed | 101 |
| abstract_inverted_index.enhanced | 29 |
| abstract_inverted_index.however, | 12 |
| abstract_inverted_index.improved | 90 |
| abstract_inverted_index.methods. | 143 |
| abstract_inverted_index.motivate | 20 |
| abstract_inverted_index.multiple | 58 |
| abstract_inverted_index.proposed | 80, 108, 115, 138 |
| abstract_inverted_index.research | 21 |
| abstract_inverted_index.Moreover, | 132 |
| abstract_inverted_index.algorithm | 31, 46, 117, 139 |
| abstract_inverted_index.capacity, | 124 |
| abstract_inverted_index.competing | 142 |
| abstract_inverted_index.copyright | 13 |
| abstract_inverted_index.denoising | 95 |
| abstract_inverted_index.embedding | 57 |
| abstract_inverted_index.encrypted | 87 |
| abstract_inverted_index.excellent | 122 |
| abstract_inverted_index.filtering | 130 |
| abstract_inverted_index.overhead, | 121 |
| abstract_inverted_index.producing | 33 |
| abstract_inverted_index.transform | 52 |
| abstract_inverted_index.violation | 14 |
| abstract_inverted_index.watermark | 123 |
| abstract_inverted_index.additional | 74 |
| abstract_inverted_index.algorithm. | 81, 109 |
| abstract_inverted_index.comparison | 134 |
| abstract_inverted_index.encryption | 91 |
| abstract_inverted_index.multi-type | 70 |
| abstract_inverted_index.robustness | 105, 127 |
| abstract_inverted_index.contributes | 72 |
| abstract_inverted_index.outperforms | 140 |
| abstract_inverted_index.robustness. | 44 |
| abstract_inverted_index.watermarked | 35 |
| abstract_inverted_index.Furthermore, | 82 |
| abstract_inverted_index.authenticity | 77 |
| abstract_inverted_index.optimisation | 39 |
| abstract_inverted_index.watermarking | 30, 116 |
| abstract_inverted_index.computational | 120 |
| abstract_inverted_index.convolutional | 96 |
| abstract_inverted_index.imperceptibility | 42 |
| abstract_inverted_index.imperceptibility, | 125 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5008002283 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I11793825 |
| citation_normalized_percentile.value | 0.14988013 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |