Hybrid Positioning Algorithm for Tilted Receiver Using RSS and TDOA with Gaussian Process Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/photonics10050538
In the visible light positioning (VLP) system, the received signal strength (RSS) algorithm has a better signal noise ratio performance than the time difference of arrival (TDOA) algorithm, while the RSS algorithm needs to work under the condition that the transmitter and receiver are strictly parallel. However, the receiver is prone to tilt due to environmental disturbances, which reduces the accuracy of the RSS algorithm. For the tilted receiver, the TDOA algorithm has a higher positioning accuracy than the RSS algorithm. In order to take full advantage of the two algorithms, we propose a hybrid positioning algorithm to locate the tilted receiver by using a Gaussian process (GP). The scheme separately uses RSS and the distance difference as the inputs of the GP model to estimate the position of the receiver. Then, according to the proposed positioning selection strategy, the more credible estimated position in our opinion is selected as the final estimated position. In addition, RSS information in the hybrid algorithm is extracted from the TDOA signal, which allows the hybrid algorithm to prevent an increase in the complexity of the VLP system. During the training and testing, RSS is normalized to meet the order-of-magnitude requirements of the GP model on the input data. Simulation results validate the hybrid algorithm based on a two-dimensional positioning system for the tilted receiver. When the standard deviations of the azimuth angle and elevation angle are 1°, the positioning accuracy of the hybrid algorithm is 53.7% higher than that of the RSS algorithm using an artificial neural network, and 49.9% higher than that of the RSS algorithm using a GP. The localization error under 1° standard deviations of azimuth and elevation angles is 20.2% lower than that under 20° standard deviations of the two angles.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/photonics10050538
- https://www.mdpi.com/2304-6732/10/5/538/pdf?version=1683459130
- OA Status
- gold
- Cited By
- 3
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4375862370
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4375862370Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/photonics10050538Digital Object Identifier
- Title
-
Hybrid Positioning Algorithm for Tilted Receiver Using RSS and TDOA with Gaussian ProcessWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-06Full publication date if available
- Authors
-
Xunhe Zuo, Zixiong Wang, Jinlong Yu, Yang JiangList of authors in order
- Landing page
-
https://doi.org/10.3390/photonics10050538Publisher landing page
- PDF URL
-
https://www.mdpi.com/2304-6732/10/5/538/pdf?version=1683459130Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2304-6732/10/5/538/pdf?version=1683459130Direct OA link when available
- Concepts
-
RSS, Multilateration, Algorithm, Computer science, Transmitter, Azimuth, Position (finance), Noise (video), Artificial intelligence, Mathematics, Telecommunications, Economics, Operating system, Image (mathematics), Geometry, Finance, Channel (broadcasting)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4375862370 |
|---|---|
| doi | https://doi.org/10.3390/photonics10050538 |
| ids.doi | https://doi.org/10.3390/photonics10050538 |
| ids.openalex | https://openalex.org/W4375862370 |
| fwci | 0.49765169 |
| type | article |
| title | Hybrid Positioning Algorithm for Tilted Receiver Using RSS and TDOA with Gaussian Process |
| biblio.issue | 5 |
| biblio.volume | 10 |
| biblio.last_page | 538 |
| biblio.first_page | 538 |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T10851 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Optical Wireless Communication Technologies |
| topics[2].id | https://openalex.org/T11192 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Underwater Vehicles and Communication Systems |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C2385561 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9248616099357605 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q45432 |
| concepts[0].display_name | RSS |
| concepts[1].id | https://openalex.org/C104037064 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7973703145980835 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1640884 |
| concepts[1].display_name | Multilateration |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7404348850250244 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7231364846229553 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C47798520 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6123707890510559 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190157 |
| concepts[4].display_name | Transmitter |
| concepts[5].id | https://openalex.org/C159737794 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5155339241027832 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q124274 |
| concepts[5].display_name | Azimuth |
| concepts[6].id | https://openalex.org/C198082294 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4628203809261322 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3399648 |
| concepts[6].display_name | Position (finance) |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4175465404987335 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.19758808612823486 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1852385699748993 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1771908700466156 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C10138342 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[15].display_name | Finance |
| concepts[16].id | https://openalex.org/C127162648 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[16].display_name | Channel (broadcasting) |
| keywords[0].id | https://openalex.org/keywords/rss |
| keywords[0].score | 0.9248616099357605 |
| keywords[0].display_name | RSS |
| keywords[1].id | https://openalex.org/keywords/multilateration |
| keywords[1].score | 0.7973703145980835 |
| keywords[1].display_name | Multilateration |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.7404348850250244 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7231364846229553 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/transmitter |
| keywords[4].score | 0.6123707890510559 |
| keywords[4].display_name | Transmitter |
| keywords[5].id | https://openalex.org/keywords/azimuth |
| keywords[5].score | 0.5155339241027832 |
| keywords[5].display_name | Azimuth |
| keywords[6].id | https://openalex.org/keywords/position |
| keywords[6].score | 0.4628203809261322 |
| keywords[6].display_name | Position (finance) |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.4175465404987335 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.19758808612823486 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.1852385699748993 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/telecommunications |
| keywords[10].score | 0.1771908700466156 |
| keywords[10].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/photonics10050538 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738274844 |
| locations[0].source.issn | 2304-6732 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2304-6732 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Photonics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2304-6732/10/5/538/pdf?version=1683459130 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Photonics |
| locations[0].landing_page_url | https://doi.org/10.3390/photonics10050538 |
| locations[1].id | pmh:oai:doaj.org/article:d34cc8bf48114c539e0a4b241d5fab1f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Photonics, Vol 10, Iss 5, p 538 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/d34cc8bf48114c539e0a4b241d5fab1f |
| locations[2].id | pmh:oai:mdpi.com:/2304-6732/10/5/538/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Photonics; Volume 10; Issue 5; Pages: 538 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/photonics10050538 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5000499614 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xunhe Zuo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| authorships[0].institutions[0].id | https://openalex.org/I162868743 |
| authorships[0].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tianjin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xunhe Zuo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| authorships[1].author.id | https://openalex.org/A5102783673 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6814-652X |
| authorships[1].author.display_name | Zixiong Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| authorships[1].institutions[0].id | https://openalex.org/I162868743 |
| authorships[1].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tianjin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zixiong Wang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| authorships[2].author.id | https://openalex.org/A5112627932 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jinlong Yu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| authorships[2].institutions[0].id | https://openalex.org/I162868743 |
| authorships[2].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tianjin University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jinlong Yu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| authorships[3].author.id | https://openalex.org/A5028411238 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7769-3998 |
| authorships[3].author.display_name | Yang Jiang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Physics, Guizhou University, Guiyang 550025, China |
| authorships[3].institutions[0].id | https://openalex.org/I178232147 |
| authorships[3].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guizhou University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yang Jiang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Physics, Guizhou University, Guiyang 550025, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2304-6732/10/5/538/pdf?version=1683459130 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid Positioning Algorithm for Tilted Receiver Using RSS and TDOA with Gaussian Process |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W2380293945, https://openalex.org/W1974812937, https://openalex.org/W1500522817, https://openalex.org/W3095239554, https://openalex.org/W1972023576, https://openalex.org/W426968574, https://openalex.org/W2365639220, https://openalex.org/W3212409750, https://openalex.org/W2099208041, https://openalex.org/W2100592654 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/photonics10050538 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738274844 |
| best_oa_location.source.issn | 2304-6732 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2304-6732 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Photonics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2304-6732/10/5/538/pdf?version=1683459130 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Photonics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/photonics10050538 |
| primary_location.id | doi:10.3390/photonics10050538 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738274844 |
| primary_location.source.issn | 2304-6732 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2304-6732 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Photonics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2304-6732/10/5/538/pdf?version=1683459130 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Photonics |
| primary_location.landing_page_url | https://doi.org/10.3390/photonics10050538 |
| publication_date | 2023-05-06 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2100989187, https://openalex.org/W3201707752, https://openalex.org/W2964029185, https://openalex.org/W2000156430, https://openalex.org/W1966370141, https://openalex.org/W3196353934, https://openalex.org/W2896075263, https://openalex.org/W3165832411, https://openalex.org/W2027783719, https://openalex.org/W2529672710, https://openalex.org/W4220676370, https://openalex.org/W2965596286, https://openalex.org/W2901563609, https://openalex.org/W2794494292, https://openalex.org/W3021842317, https://openalex.org/W2941394127, https://openalex.org/W6752008403, https://openalex.org/W2900187546, https://openalex.org/W2135895052, https://openalex.org/W2163770389, https://openalex.org/W3000508506, https://openalex.org/W4211049957, https://openalex.org/W2978449012, https://openalex.org/W2117063635, https://openalex.org/W4293581317, https://openalex.org/W2806913761 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 14, 73, 93, 104, 213, 265 |
| abstract_inverted_index.GP | 122, 199 |
| abstract_inverted_index.In | 0, 81, 154 |
| abstract_inverted_index.an | 175, 251 |
| abstract_inverted_index.as | 117, 149 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.in | 144, 158, 177 |
| abstract_inverted_index.is | 49, 147, 162, 190, 241, 279 |
| abstract_inverted_index.of | 24, 61, 87, 120, 128, 180, 197, 225, 237, 246, 260, 274, 288 |
| abstract_inverted_index.on | 201, 212 |
| abstract_inverted_index.to | 33, 51, 54, 83, 97, 124, 133, 173, 192 |
| abstract_inverted_index.we | 91 |
| abstract_inverted_index.1° | 271 |
| abstract_inverted_index.For | 65 |
| abstract_inverted_index.GP. | 266 |
| abstract_inverted_index.RSS | 30, 63, 79, 112, 156, 189, 248, 262 |
| abstract_inverted_index.The | 108, 267 |
| abstract_inverted_index.VLP | 182 |
| abstract_inverted_index.and | 41, 113, 187, 229, 255, 276 |
| abstract_inverted_index.are | 43, 232 |
| abstract_inverted_index.due | 53 |
| abstract_inverted_index.for | 217 |
| abstract_inverted_index.has | 13, 72 |
| abstract_inverted_index.our | 145 |
| abstract_inverted_index.the | 1, 7, 21, 29, 36, 39, 47, 59, 62, 66, 69, 78, 88, 99, 114, 118, 121, 126, 129, 134, 139, 150, 159, 165, 170, 178, 181, 185, 194, 198, 202, 208, 218, 222, 226, 234, 238, 247, 261, 289 |
| abstract_inverted_index.two | 89, 290 |
| abstract_inverted_index.1°, | 233 |
| abstract_inverted_index.20° | 285 |
| abstract_inverted_index.TDOA | 70, 166 |
| abstract_inverted_index.When | 221 |
| abstract_inverted_index.from | 164 |
| abstract_inverted_index.full | 85 |
| abstract_inverted_index.meet | 193 |
| abstract_inverted_index.more | 140 |
| abstract_inverted_index.take | 84 |
| abstract_inverted_index.than | 20, 77, 244, 258, 282 |
| abstract_inverted_index.that | 38, 245, 259, 283 |
| abstract_inverted_index.tilt | 52 |
| abstract_inverted_index.time | 22 |
| abstract_inverted_index.uses | 111 |
| abstract_inverted_index.work | 34 |
| abstract_inverted_index.(GP). | 107 |
| abstract_inverted_index.(RSS) | 11 |
| abstract_inverted_index.(VLP) | 5 |
| abstract_inverted_index.20.2% | 280 |
| abstract_inverted_index.49.9% | 256 |
| abstract_inverted_index.53.7% | 242 |
| abstract_inverted_index.Then, | 131 |
| abstract_inverted_index.angle | 228, 231 |
| abstract_inverted_index.based | 211 |
| abstract_inverted_index.data. | 204 |
| abstract_inverted_index.error | 269 |
| abstract_inverted_index.final | 151 |
| abstract_inverted_index.input | 203 |
| abstract_inverted_index.light | 3 |
| abstract_inverted_index.lower | 281 |
| abstract_inverted_index.model | 123, 200 |
| abstract_inverted_index.needs | 32 |
| abstract_inverted_index.noise | 17 |
| abstract_inverted_index.order | 82 |
| abstract_inverted_index.prone | 50 |
| abstract_inverted_index.ratio | 18 |
| abstract_inverted_index.under | 35, 270, 284 |
| abstract_inverted_index.using | 103, 250, 264 |
| abstract_inverted_index.which | 57, 168 |
| abstract_inverted_index.while | 28 |
| abstract_inverted_index.(TDOA) | 26 |
| abstract_inverted_index.During | 184 |
| abstract_inverted_index.allows | 169 |
| abstract_inverted_index.angles | 278 |
| abstract_inverted_index.better | 15 |
| abstract_inverted_index.higher | 74, 243, 257 |
| abstract_inverted_index.hybrid | 94, 160, 171, 209, 239 |
| abstract_inverted_index.inputs | 119 |
| abstract_inverted_index.locate | 98 |
| abstract_inverted_index.neural | 253 |
| abstract_inverted_index.scheme | 109 |
| abstract_inverted_index.signal | 9, 16 |
| abstract_inverted_index.system | 216 |
| abstract_inverted_index.tilted | 67, 100, 219 |
| abstract_inverted_index.angles. | 291 |
| abstract_inverted_index.arrival | 25 |
| abstract_inverted_index.azimuth | 227, 275 |
| abstract_inverted_index.opinion | 146 |
| abstract_inverted_index.prevent | 174 |
| abstract_inverted_index.process | 106 |
| abstract_inverted_index.propose | 92 |
| abstract_inverted_index.reduces | 58 |
| abstract_inverted_index.results | 206 |
| abstract_inverted_index.signal, | 167 |
| abstract_inverted_index.system, | 6 |
| abstract_inverted_index.system. | 183 |
| abstract_inverted_index.visible | 2 |
| abstract_inverted_index.Gaussian | 105 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.accuracy | 60, 76, 236 |
| abstract_inverted_index.credible | 141 |
| abstract_inverted_index.distance | 115 |
| abstract_inverted_index.estimate | 125 |
| abstract_inverted_index.increase | 176 |
| abstract_inverted_index.network, | 254 |
| abstract_inverted_index.position | 127, 143 |
| abstract_inverted_index.proposed | 135 |
| abstract_inverted_index.received | 8 |
| abstract_inverted_index.receiver | 42, 48, 101 |
| abstract_inverted_index.selected | 148 |
| abstract_inverted_index.standard | 223, 272, 286 |
| abstract_inverted_index.strength | 10 |
| abstract_inverted_index.strictly | 44 |
| abstract_inverted_index.testing, | 188 |
| abstract_inverted_index.training | 186 |
| abstract_inverted_index.validate | 207 |
| abstract_inverted_index.according | 132 |
| abstract_inverted_index.addition, | 155 |
| abstract_inverted_index.advantage | 86 |
| abstract_inverted_index.algorithm | 12, 31, 71, 96, 161, 172, 210, 240, 249, 263 |
| abstract_inverted_index.condition | 37 |
| abstract_inverted_index.elevation | 230, 277 |
| abstract_inverted_index.estimated | 142, 152 |
| abstract_inverted_index.extracted | 163 |
| abstract_inverted_index.parallel. | 45 |
| abstract_inverted_index.position. | 153 |
| abstract_inverted_index.receiver, | 68 |
| abstract_inverted_index.receiver. | 130, 220 |
| abstract_inverted_index.selection | 137 |
| abstract_inverted_index.strategy, | 138 |
| abstract_inverted_index.Simulation | 205 |
| abstract_inverted_index.algorithm, | 27 |
| abstract_inverted_index.algorithm. | 64, 80 |
| abstract_inverted_index.artificial | 252 |
| abstract_inverted_index.complexity | 179 |
| abstract_inverted_index.deviations | 224, 273, 287 |
| abstract_inverted_index.difference | 23, 116 |
| abstract_inverted_index.normalized | 191 |
| abstract_inverted_index.separately | 110 |
| abstract_inverted_index.algorithms, | 90 |
| abstract_inverted_index.information | 157 |
| abstract_inverted_index.performance | 19 |
| abstract_inverted_index.positioning | 4, 75, 95, 136, 215, 235 |
| abstract_inverted_index.transmitter | 40 |
| abstract_inverted_index.localization | 268 |
| abstract_inverted_index.requirements | 196 |
| abstract_inverted_index.disturbances, | 56 |
| abstract_inverted_index.environmental | 55 |
| abstract_inverted_index.two-dimensional | 214 |
| abstract_inverted_index.order-of-magnitude | 195 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5102783673 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I162868743 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.61984711 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |