Hybrid Quantum-Classical Computing Architectures Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.13140/rg.2.2.23841.84321
· OA: W3124562050
We describe how classical supercomputing can aid unreliable quantum processors of intermediate size to solve large problem instances reliably. We advocate using a hybrid quantum-classical architecture where larger quantum circuits are broken into smaller sub-circuits that are evaluated separately, either using a quantum processor or a quantum simulator running on a classical supercomputer. Circuit compilation techniques that determine which qubits are simulated classically will greatly impact the system performance as well as provide a tradeoff between circuit reliability and runtime. We describe how classical supercomputing can aid unreliable quantum processors of intermediate size to solve large problem instances reliably. We advocate using a hybrid quantum-classical architecture where larger quantum circuits are broken into smaller sub-circuits that are evaluated separately, either using a quantum processor or a quantum simulator running on a classical supercomputer. Circuit compilation techniques that determine which qubits are simulated classically will greatly impact the system performance as well as provide a tradeoff between circuit reliability and runtime.