Hybrid Quantum Convolutional Neural Network-Aided Pilot Assignment in Cell-Free Massive MIMO Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.06585
A sophisticated hybrid quantum convolutional neural network (HQCNN) is conceived for handling the pilot assignment task in cell-free massive MIMO systems, while maximizing the total ergodic sum throughput. The existing model-based solutions found in the literature are inefficient and/or computationally demanding. Similarly, conventional deep neural networks may struggle in the face of high-dimensional inputs, require complex architectures, and their convergence is slow due to training numerous hyperparameters. The proposed HQCNN leverages parameterized quantum circuits (PQCs) relying on superposition for enhanced feature extraction. Specifically, we exploit the same PQC across all the convolutional layers for customizing the neural network and for accelerating the convergence. Our numerical results demonstrate that the proposed HQCNN offers a total network throughput close to that of the excessive-complexity exhaustive search and outperforms the state-of-the-art benchmarks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.06585
- https://arxiv.org/pdf/2507.06585
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416063007
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416063007Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.06585Digital Object Identifier
- Title
-
Hybrid Quantum Convolutional Neural Network-Aided Pilot Assignment in Cell-Free Massive MIMO SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-09Full publication date if available
- Authors
-
Dat Nguyen, Nguyen Xuan Tung, Seon-Geun Jeong, Trinh Van Chien, Lajos Hanzo, Won–Joo HwangList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.06585Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.06585Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.06585Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416063007 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.06585 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.06585 |
| ids.openalex | https://openalex.org/W4416063007 |
| fwci | |
| type | preprint |
| title | Hybrid Quantum Convolutional Neural Network-Aided Pilot Assignment in Cell-Free Massive MIMO Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.06585 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.06585 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.06585 |
| locations[1].id | doi:10.48550/arxiv.2507.06585 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.06585 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020547925 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3852-9578 |
| authorships[0].author.display_name | Dat Nguyen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nguyen, Doan Hieu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5090841686 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1945-8658 |
| authorships[1].author.display_name | Nguyen Xuan Tung |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nguyen, Xuan Tung |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069762146 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Seon-Geun Jeong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jeong, Seon-Geun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018288108 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5675-8414 |
| authorships[3].author.display_name | Trinh Van Chien |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Van Chien, Trinh |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5091122305 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2636-5214 |
| authorships[4].author.display_name | Lajos Hanzo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hanzo, Lajos |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5085192467 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8398-564X |
| authorships[5].author.display_name | Won–Joo Hwang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hwang, Won Joo |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.06585 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid Quantum Convolutional Neural Network-Aided Pilot Assignment in Cell-Free Massive MIMO Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:24:57.743691 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.06585 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.06585 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.06585 |
| primary_location.id | pmh:oai:arXiv.org:2507.06585 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.06585 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.06585 |
| publication_date | 2025-07-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 112 |
| abstract_inverted_index.in | 16, 33, 48 |
| abstract_inverted_index.is | 8, 60 |
| abstract_inverted_index.of | 51, 119 |
| abstract_inverted_index.on | 76 |
| abstract_inverted_index.to | 63, 117 |
| abstract_inverted_index.we | 83 |
| abstract_inverted_index.Our | 103 |
| abstract_inverted_index.PQC | 87 |
| abstract_inverted_index.The | 28, 67 |
| abstract_inverted_index.all | 89 |
| abstract_inverted_index.and | 57, 98, 124 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.due | 62 |
| abstract_inverted_index.for | 10, 78, 93, 99 |
| abstract_inverted_index.may | 46 |
| abstract_inverted_index.sum | 26 |
| abstract_inverted_index.the | 12, 23, 34, 49, 85, 90, 95, 101, 108, 120, 126 |
| abstract_inverted_index.MIMO | 19 |
| abstract_inverted_index.deep | 43 |
| abstract_inverted_index.face | 50 |
| abstract_inverted_index.same | 86 |
| abstract_inverted_index.slow | 61 |
| abstract_inverted_index.task | 15 |
| abstract_inverted_index.that | 107, 118 |
| abstract_inverted_index.HQCNN | 69, 110 |
| abstract_inverted_index.close | 116 |
| abstract_inverted_index.found | 32 |
| abstract_inverted_index.pilot | 13 |
| abstract_inverted_index.their | 58 |
| abstract_inverted_index.total | 24, 113 |
| abstract_inverted_index.while | 21 |
| abstract_inverted_index.(PQCs) | 74 |
| abstract_inverted_index.across | 88 |
| abstract_inverted_index.and/or | 38 |
| abstract_inverted_index.hybrid | 2 |
| abstract_inverted_index.layers | 92 |
| abstract_inverted_index.neural | 5, 44, 96 |
| abstract_inverted_index.offers | 111 |
| abstract_inverted_index.search | 123 |
| abstract_inverted_index.(HQCNN) | 7 |
| abstract_inverted_index.complex | 55 |
| abstract_inverted_index.ergodic | 25 |
| abstract_inverted_index.exploit | 84 |
| abstract_inverted_index.feature | 80 |
| abstract_inverted_index.inputs, | 53 |
| abstract_inverted_index.massive | 18 |
| abstract_inverted_index.network | 6, 97, 114 |
| abstract_inverted_index.quantum | 3, 72 |
| abstract_inverted_index.relying | 75 |
| abstract_inverted_index.require | 54 |
| abstract_inverted_index.results | 105 |
| abstract_inverted_index.circuits | 73 |
| abstract_inverted_index.enhanced | 79 |
| abstract_inverted_index.existing | 29 |
| abstract_inverted_index.handling | 11 |
| abstract_inverted_index.networks | 45 |
| abstract_inverted_index.numerous | 65 |
| abstract_inverted_index.proposed | 68, 109 |
| abstract_inverted_index.struggle | 47 |
| abstract_inverted_index.systems, | 20 |
| abstract_inverted_index.training | 64 |
| abstract_inverted_index.cell-free | 17 |
| abstract_inverted_index.conceived | 9 |
| abstract_inverted_index.leverages | 70 |
| abstract_inverted_index.numerical | 104 |
| abstract_inverted_index.solutions | 31 |
| abstract_inverted_index.Similarly, | 41 |
| abstract_inverted_index.assignment | 14 |
| abstract_inverted_index.demanding. | 40 |
| abstract_inverted_index.exhaustive | 122 |
| abstract_inverted_index.literature | 35 |
| abstract_inverted_index.maximizing | 22 |
| abstract_inverted_index.throughput | 115 |
| abstract_inverted_index.benchmarks. | 128 |
| abstract_inverted_index.convergence | 59 |
| abstract_inverted_index.customizing | 94 |
| abstract_inverted_index.demonstrate | 106 |
| abstract_inverted_index.extraction. | 81 |
| abstract_inverted_index.inefficient | 37 |
| abstract_inverted_index.model-based | 30 |
| abstract_inverted_index.outperforms | 125 |
| abstract_inverted_index.throughput. | 27 |
| abstract_inverted_index.accelerating | 100 |
| abstract_inverted_index.conventional | 42 |
| abstract_inverted_index.convergence. | 102 |
| abstract_inverted_index.Specifically, | 82 |
| abstract_inverted_index.convolutional | 4, 91 |
| abstract_inverted_index.parameterized | 71 |
| abstract_inverted_index.sophisticated | 1 |
| abstract_inverted_index.superposition | 77 |
| abstract_inverted_index.architectures, | 56 |
| abstract_inverted_index.computationally | 39 |
| abstract_inverted_index.high-dimensional | 52 |
| abstract_inverted_index.hyperparameters. | 66 |
| abstract_inverted_index.state-of-the-art | 127 |
| abstract_inverted_index.excessive-complexity | 121 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |