Hybrid transformer‐based model for mammogram classification by integrating prior and current images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/mp.17650
Background Breast cancer screening via mammography plays a crucial role in early detection, significantly impacting women's health outcomes worldwide. However, the manual analysis of mammographic images is time‐consuming and requires specialized expertise, presenting substantial challenges in medical practice. Purpose To address these challenges, we introduce a CNN‐Transformer based model tailored for breast cancer classification through mammographic analysis. This model leverages both prior and current images to monitor temporal changes, aiming to enhance the efficiency and accuracy (ACC) of computer‐aided diagnosis systems by mimicking the detailed examination process of radiologists. Methods In this study, our proposed model incorporates a novel integration of a position‐wise feedforward network and multi‐head self‐attention, enabling it to detect abnormal or cancerous changes in mammograms over time. Additionally, the model employs positional encoding and channel attention methods to accurately highlight critical spatial features, thus precisely differentiating between normal and cancerous tissues. Our methodology utilizes focal loss (FL) to precisely address challenging instances that are difficult to classify, reducing false negatives and false positives to improve diagnostic ACC. Results We compared our model with eight baseline models; specifically, we utilized only current images for the single model ResNet50 while employing both prior and current images for the remaining models in terms of accuracy (ACC), sensitivity (SEN), precision (PRE), specificity (SPE), F1 score, and area under the curve (AUC). The results demonstrate that the proposed model outperforms the baseline models, achieving an ACC of 90.80%, SEN of 90.80%, PRE of 90.80%, SPE of 90.88%, an F1 score of 90.95%, and an AUC of 92.58%. The codes and related information are available at https://github.com/NabaviLab/PCTM . Conclusions Our proposed CNN‐Transformer model integrates both prior and current images, removes long‐range dependencies, and enhances its capability for nuanced classification. The application of FL reduces false positive rate (FPR) and false negative rates (FNR), improving both SEN and SPE. Furthermore, the model achieves the lowest false discovery rate and FNR across various abnormalities, including masses, calcification, and architectural distortions (ADs). These low error rates highlight the model's reliability and underscore its potential to improve early breast cancer detection in clinical practice.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/mp.17650
- OA Status
- green
- Cited By
- 7
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407046757
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407046757Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/mp.17650Digital Object Identifier
- Title
-
Hybrid transformer‐based model for mammogram classification by integrating prior and current imagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-30Full publication date if available
- Authors
-
Afsana Ahsan Jeny, Sahand Hamzehei, Annie Jin, Simon Baker, Tucker Van Rathe, Jun Bai, Clifford Yang, Sheida NabaviList of authors in order
- Landing page
-
https://doi.org/10.1002/mp.17650Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/12082763Direct OA link when available
- Concepts
-
Computer science, Mammography, Artificial intelligence, False positive paradox, Medical imaging, Pattern recognition (psychology), Machine learning, Breast cancer, Data mining, Cancer, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407046757 |
|---|---|
| doi | https://doi.org/10.1002/mp.17650 |
| ids.doi | https://doi.org/10.1002/mp.17650 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39887755 |
| ids.openalex | https://openalex.org/W4407046757 |
| fwci | 33.73821602 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D008327 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Mammography |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D001943 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Breast Neoplasms |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D007091 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Image Processing, Computer-Assisted |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D005260 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Female |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008327 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Mammography |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D001943 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Breast Neoplasms |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D007091 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Image Processing, Computer-Assisted |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005260 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Female |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D008327 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Mammography |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | Q000000981 |
| mesh[14].descriptor_ui | D001943 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | diagnostic imaging |
| mesh[14].descriptor_name | Breast Neoplasms |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D007091 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Image Processing, Computer-Assisted |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D005260 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Female |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016571 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Neural Networks, Computer |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D008327 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Mammography |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D006801 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Humans |
| mesh[20].qualifier_ui | Q000000981 |
| mesh[20].descriptor_ui | D001943 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | diagnostic imaging |
| mesh[20].descriptor_name | Breast Neoplasms |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D007091 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Image Processing, Computer-Assisted |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D005260 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Female |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D016571 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Hybrid transformer‐based model for mammogram classification by integrating prior and current images |
| biblio.issue | 5 |
| biblio.volume | 52 |
| biblio.last_page | 3014 |
| biblio.first_page | 2999 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| funders[0].id | https://openalex.org/F4320310017 |
| funders[0].ror | https://ror.org/02der9h97 |
| funders[0].display_name | University of Connecticut |
| is_xpac | False |
| apc_list.value | 3040 |
| apc_list.currency | USD |
| apc_list.value_usd | 3040 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6658978462219238 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780472235 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6609434485435486 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[1].display_name | Mammography |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6369141340255737 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C64869954 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6365689039230347 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[3].display_name | False positive paradox |
| concepts[4].id | https://openalex.org/C31601959 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4867129623889923 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[4].display_name | Medical imaging |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4757094979286194 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4339015781879425 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C530470458 |
| concepts[7].level | 3 |
| concepts[7].score | 0.37856656312942505 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[7].display_name | Breast cancer |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3389214873313904 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C121608353 |
| concepts[9].level | 2 |
| concepts[9].score | 0.19505012035369873 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[9].display_name | Cancer |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17208296060562134 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6658978462219238 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/mammography |
| keywords[1].score | 0.6609434485435486 |
| keywords[1].display_name | Mammography |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6369141340255737 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[3].score | 0.6365689039230347 |
| keywords[3].display_name | False positive paradox |
| keywords[4].id | https://openalex.org/keywords/medical-imaging |
| keywords[4].score | 0.4867129623889923 |
| keywords[4].display_name | Medical imaging |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4757094979286194 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4339015781879425 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/breast-cancer |
| keywords[7].score | 0.37856656312942505 |
| keywords[7].display_name | Breast cancer |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3389214873313904 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/cancer |
| keywords[9].score | 0.19505012035369873 |
| keywords[9].display_name | Cancer |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.17208296060562134 |
| keywords[10].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1002/mp.17650 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S95522064 |
| locations[0].source.issn | 0094-2405, 1522-8541, 2473-4209 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-2405 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Medical Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medical Physics |
| locations[0].landing_page_url | https://doi.org/10.1002/mp.17650 |
| locations[1].id | pmid:39887755 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Medical physics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39887755 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12082763 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Med Phys |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12082763 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5001351632 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8524-9600 |
| authorships[0].author.display_name | Afsana Ahsan Jeny |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing, University of Connecticut, Storrs, Connecticut, USA |
| authorships[0].institutions[0].id | https://openalex.org/I140172145 |
| authorships[0].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Connecticut |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Afsana Ahsan Jeny |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computing, University of Connecticut, Storrs, Connecticut, USA |
| authorships[1].author.id | https://openalex.org/A5089811712 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-2015-9820 |
| authorships[1].author.display_name | Sahand Hamzehei |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing, University of Connecticut, Storrs, Connecticut, USA |
| authorships[1].institutions[0].id | https://openalex.org/I140172145 |
| authorships[1].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Connecticut |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sahand Hamzehei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computing, University of Connecticut, Storrs, Connecticut, USA |
| authorships[2].author.id | https://openalex.org/A5040928482 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6857-8541 |
| authorships[2].author.display_name | Annie Jin |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I75929689 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiology, UConn Health, Farmington, Connecticut, USA |
| authorships[2].institutions[0].id | https://openalex.org/I75929689 |
| authorships[2].institutions[0].ror | https://ror.org/02kzs4y22 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I75929689 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | UConn Health |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Annie Jin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiology, UConn Health, Farmington, Connecticut, USA |
| authorships[3].author.id | https://openalex.org/A5061943510 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0716-6236 |
| authorships[3].author.display_name | Simon Baker |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75929689 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology, UConn Health, Farmington, Connecticut, USA |
| authorships[3].institutions[0].id | https://openalex.org/I75929689 |
| authorships[3].institutions[0].ror | https://ror.org/02kzs4y22 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I75929689 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | UConn Health |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Stephen Andrew Baker |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiology, UConn Health, Farmington, Connecticut, USA |
| authorships[4].author.id | https://openalex.org/A5116109248 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tucker Van Rathe |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I75929689 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, UConn Health, Farmington, Connecticut, USA |
| authorships[4].institutions[0].id | https://openalex.org/I75929689 |
| authorships[4].institutions[0].ror | https://ror.org/02kzs4y22 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I75929689 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | UConn Health |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tucker Van Rathe |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Radiology, UConn Health, Farmington, Connecticut, USA |
| authorships[5].author.id | https://openalex.org/A5025418207 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6505-1998 |
| authorships[5].author.display_name | Jun Bai |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computing, University of Connecticut, Storrs, Connecticut, USA |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I63135867 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, USA |
| authorships[5].institutions[0].id | https://openalex.org/I63135867 |
| authorships[5].institutions[0].ror | https://ror.org/01e3m7079 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I63135867 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Cincinnati |
| authorships[5].institutions[1].id | https://openalex.org/I140172145 |
| authorships[5].institutions[1].ror | https://ror.org/02der9h97 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I140172145 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | University of Connecticut |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jun Bai |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, USA, School of Computing, University of Connecticut, Storrs, Connecticut, USA |
| authorships[6].author.id | https://openalex.org/A5103870304 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Clifford Yang |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I75929689 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Radiology, UConn Health, Farmington, Connecticut, USA |
| authorships[6].institutions[0].id | https://openalex.org/I75929689 |
| authorships[6].institutions[0].ror | https://ror.org/02kzs4y22 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I75929689 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | UConn Health |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Clifford Yang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Radiology, UConn Health, Farmington, Connecticut, USA |
| authorships[7].author.id | https://openalex.org/A5010254642 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5996-1020 |
| authorships[7].author.display_name | Sheida Nabavi |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Computing, University of Connecticut, Storrs, Connecticut, USA |
| authorships[7].institutions[0].id | https://openalex.org/I140172145 |
| authorships[7].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Connecticut |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Sheida Nabavi |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | School of Computing, University of Connecticut, Storrs, Connecticut, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12082763 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid transformer‐based model for mammogram classification by integrating prior and current images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1557094818, https://openalex.org/W2183246718, https://openalex.org/W2099261052, https://openalex.org/W3209204065, https://openalex.org/W1755711892, https://openalex.org/W2160907113, https://openalex.org/W1514924336, https://openalex.org/W2070813941, https://openalex.org/W2105707930 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:12082763 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Med Phys |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12082763 |
| primary_location.id | doi:10.1002/mp.17650 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S95522064 |
| primary_location.source.issn | 0094-2405, 1522-8541, 2473-4209 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-2405 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Medical Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medical Physics |
| primary_location.landing_page_url | https://doi.org/10.1002/mp.17650 |
| publication_date | 2025-01-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4206841660, https://openalex.org/W2885969267, https://openalex.org/W2611533960, https://openalex.org/W3044605555, https://openalex.org/W2122848359, https://openalex.org/W2406419719, https://openalex.org/W2765652254, https://openalex.org/W2038477348, https://openalex.org/W2037051172, https://openalex.org/W2761100306, https://openalex.org/W2913774342, https://openalex.org/W2035009069, https://openalex.org/W941721469, https://openalex.org/W2030742428, https://openalex.org/W3035204342, https://openalex.org/W3087117346, https://openalex.org/W2964189045, https://openalex.org/W2980030301, https://openalex.org/W2996253120, https://openalex.org/W4200525895, https://openalex.org/W2580611662, https://openalex.org/W2984544647, https://openalex.org/W6765458459, https://openalex.org/W3049536867, https://openalex.org/W4327703579, https://openalex.org/W3158315073, https://openalex.org/W4406260590, https://openalex.org/W2761969486, https://openalex.org/W4220660589, https://openalex.org/W3206815816, https://openalex.org/W4294975187, https://openalex.org/W4212875960, https://openalex.org/W3124938033, https://openalex.org/W4361230795, https://openalex.org/W1677182931, https://openalex.org/W4281489883, https://openalex.org/W3160412534, https://openalex.org/W4392222294, https://openalex.org/W2776937175, https://openalex.org/W6940459952, https://openalex.org/W3195487931, https://openalex.org/W4376631151, https://openalex.org/W3087457015, https://openalex.org/W2108598243, https://openalex.org/W4399539485, https://openalex.org/W2962858109, https://openalex.org/W2896485798, https://openalex.org/W4313591539, https://openalex.org/W4401753183, https://openalex.org/W2991569725, https://openalex.org/W4300154369, https://openalex.org/W4244405569, https://openalex.org/W4387211800 |
| referenced_works_count | 53 |
| abstract_inverted_index.. | 265 |
| abstract_inverted_index.a | 8, 46, 98, 102 |
| abstract_inverted_index.F1 | 213, 247 |
| abstract_inverted_index.FL | 290 |
| abstract_inverted_index.In | 91 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.We | 172 |
| abstract_inverted_index.an | 233, 246, 252 |
| abstract_inverted_index.at | 263 |
| abstract_inverted_index.by | 82 |
| abstract_inverted_index.in | 11, 36, 117, 202, 345 |
| abstract_inverted_index.is | 27 |
| abstract_inverted_index.it | 110 |
| abstract_inverted_index.of | 24, 78, 88, 101, 204, 235, 238, 241, 244, 249, 254, 289 |
| abstract_inverted_index.or | 114 |
| abstract_inverted_index.to | 66, 71, 111, 131, 151, 159, 167, 339 |
| abstract_inverted_index.we | 44, 181 |
| abstract_inverted_index.ACC | 234 |
| abstract_inverted_index.AUC | 253 |
| abstract_inverted_index.FNR | 316 |
| abstract_inverted_index.Our | 145, 267 |
| abstract_inverted_index.PRE | 240 |
| abstract_inverted_index.SEN | 237, 303 |
| abstract_inverted_index.SPE | 243 |
| abstract_inverted_index.The | 221, 256, 287 |
| abstract_inverted_index.and | 29, 63, 75, 106, 127, 142, 164, 195, 215, 251, 258, 274, 280, 296, 304, 315, 323, 335 |
| abstract_inverted_index.are | 157, 261 |
| abstract_inverted_index.for | 51, 186, 198, 284 |
| abstract_inverted_index.its | 282, 337 |
| abstract_inverted_index.low | 328 |
| abstract_inverted_index.our | 94, 174 |
| abstract_inverted_index.the | 21, 73, 84, 122, 187, 199, 218, 225, 229, 307, 310, 332 |
| abstract_inverted_index.via | 5 |
| abstract_inverted_index.(FL) | 150 |
| abstract_inverted_index.ACC. | 170 |
| abstract_inverted_index.SPE. | 305 |
| abstract_inverted_index.This | 58 |
| abstract_inverted_index.area | 216 |
| abstract_inverted_index.both | 61, 193, 272, 302 |
| abstract_inverted_index.loss | 149 |
| abstract_inverted_index.only | 183 |
| abstract_inverted_index.over | 119 |
| abstract_inverted_index.rate | 294, 314 |
| abstract_inverted_index.role | 10 |
| abstract_inverted_index.that | 156, 224 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.thus | 137 |
| abstract_inverted_index.with | 176 |
| abstract_inverted_index.(ACC) | 77 |
| abstract_inverted_index.(FPR) | 295 |
| abstract_inverted_index.These | 327 |
| abstract_inverted_index.based | 48 |
| abstract_inverted_index.codes | 257 |
| abstract_inverted_index.curve | 219 |
| abstract_inverted_index.early | 12, 341 |
| abstract_inverted_index.eight | 177 |
| abstract_inverted_index.error | 329 |
| abstract_inverted_index.false | 162, 165, 292, 297, 312 |
| abstract_inverted_index.focal | 148 |
| abstract_inverted_index.model | 49, 59, 96, 123, 175, 189, 227, 270, 308 |
| abstract_inverted_index.novel | 99 |
| abstract_inverted_index.plays | 7 |
| abstract_inverted_index.prior | 62, 194, 273 |
| abstract_inverted_index.rates | 299, 330 |
| abstract_inverted_index.score | 248 |
| abstract_inverted_index.terms | 203 |
| abstract_inverted_index.these | 42 |
| abstract_inverted_index.time. | 120 |
| abstract_inverted_index.under | 217 |
| abstract_inverted_index.while | 191 |
| abstract_inverted_index.(ACC), | 206 |
| abstract_inverted_index.(ADs). | 326 |
| abstract_inverted_index.(AUC). | 220 |
| abstract_inverted_index.(FNR), | 300 |
| abstract_inverted_index.(PRE), | 210 |
| abstract_inverted_index.(SEN), | 208 |
| abstract_inverted_index.(SPE), | 212 |
| abstract_inverted_index.Breast | 2 |
| abstract_inverted_index.across | 317 |
| abstract_inverted_index.aiming | 70 |
| abstract_inverted_index.breast | 52, 342 |
| abstract_inverted_index.cancer | 3, 53, 343 |
| abstract_inverted_index.detect | 112 |
| abstract_inverted_index.health | 17 |
| abstract_inverted_index.images | 26, 65, 185, 197 |
| abstract_inverted_index.lowest | 311 |
| abstract_inverted_index.manual | 22 |
| abstract_inverted_index.models | 201 |
| abstract_inverted_index.normal | 141 |
| abstract_inverted_index.score, | 214 |
| abstract_inverted_index.single | 188 |
| abstract_inverted_index.study, | 93 |
| abstract_inverted_index.90.80%, | 236, 239, 242 |
| abstract_inverted_index.90.88%, | 245 |
| abstract_inverted_index.90.95%, | 250 |
| abstract_inverted_index.92.58%. | 255 |
| abstract_inverted_index.Methods | 90 |
| abstract_inverted_index.Purpose | 39 |
| abstract_inverted_index.Results | 171 |
| abstract_inverted_index.address | 41, 153 |
| abstract_inverted_index.between | 140 |
| abstract_inverted_index.changes | 116 |
| abstract_inverted_index.channel | 128 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.current | 64, 184, 196, 275 |
| abstract_inverted_index.employs | 124 |
| abstract_inverted_index.enhance | 72 |
| abstract_inverted_index.images, | 276 |
| abstract_inverted_index.improve | 168, 340 |
| abstract_inverted_index.masses, | 321 |
| abstract_inverted_index.medical | 37 |
| abstract_inverted_index.methods | 130 |
| abstract_inverted_index.model's | 333 |
| abstract_inverted_index.models, | 231 |
| abstract_inverted_index.models; | 179 |
| abstract_inverted_index.monitor | 67 |
| abstract_inverted_index.network | 105 |
| abstract_inverted_index.nuanced | 285 |
| abstract_inverted_index.process | 87 |
| abstract_inverted_index.reduces | 291 |
| abstract_inverted_index.related | 259 |
| abstract_inverted_index.removes | 277 |
| abstract_inverted_index.results | 222 |
| abstract_inverted_index.spatial | 135 |
| abstract_inverted_index.systems | 81 |
| abstract_inverted_index.through | 55 |
| abstract_inverted_index.various | 318 |
| abstract_inverted_index.women's | 16 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.ResNet50 | 190 |
| abstract_inverted_index.abnormal | 113 |
| abstract_inverted_index.accuracy | 76, 205 |
| abstract_inverted_index.achieves | 309 |
| abstract_inverted_index.analysis | 23 |
| abstract_inverted_index.baseline | 178, 230 |
| abstract_inverted_index.changes, | 69 |
| abstract_inverted_index.clinical | 346 |
| abstract_inverted_index.compared | 173 |
| abstract_inverted_index.critical | 134 |
| abstract_inverted_index.detailed | 85 |
| abstract_inverted_index.enabling | 109 |
| abstract_inverted_index.encoding | 126 |
| abstract_inverted_index.enhances | 281 |
| abstract_inverted_index.negative | 298 |
| abstract_inverted_index.outcomes | 18 |
| abstract_inverted_index.positive | 293 |
| abstract_inverted_index.proposed | 95, 226, 268 |
| abstract_inverted_index.reducing | 161 |
| abstract_inverted_index.requires | 30 |
| abstract_inverted_index.tailored | 50 |
| abstract_inverted_index.temporal | 68 |
| abstract_inverted_index.tissues. | 144 |
| abstract_inverted_index.utilized | 182 |
| abstract_inverted_index.utilizes | 147 |
| abstract_inverted_index.achieving | 232 |
| abstract_inverted_index.analysis. | 57 |
| abstract_inverted_index.attention | 129 |
| abstract_inverted_index.available | 262 |
| abstract_inverted_index.cancerous | 115, 143 |
| abstract_inverted_index.classify, | 160 |
| abstract_inverted_index.detection | 344 |
| abstract_inverted_index.diagnosis | 80 |
| abstract_inverted_index.difficult | 158 |
| abstract_inverted_index.discovery | 313 |
| abstract_inverted_index.employing | 192 |
| abstract_inverted_index.features, | 136 |
| abstract_inverted_index.highlight | 133, 331 |
| abstract_inverted_index.impacting | 15 |
| abstract_inverted_index.improving | 301 |
| abstract_inverted_index.including | 320 |
| abstract_inverted_index.instances | 155 |
| abstract_inverted_index.introduce | 45 |
| abstract_inverted_index.leverages | 60 |
| abstract_inverted_index.mimicking | 83 |
| abstract_inverted_index.negatives | 163 |
| abstract_inverted_index.positives | 166 |
| abstract_inverted_index.potential | 338 |
| abstract_inverted_index.practice. | 38, 347 |
| abstract_inverted_index.precisely | 138, 152 |
| abstract_inverted_index.precision | 209 |
| abstract_inverted_index.remaining | 200 |
| abstract_inverted_index.screening | 4 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.accurately | 132 |
| abstract_inverted_index.capability | 283 |
| abstract_inverted_index.challenges | 35 |
| abstract_inverted_index.detection, | 13 |
| abstract_inverted_index.diagnostic | 169 |
| abstract_inverted_index.efficiency | 74 |
| abstract_inverted_index.expertise, | 32 |
| abstract_inverted_index.integrates | 271 |
| abstract_inverted_index.mammograms | 118 |
| abstract_inverted_index.positional | 125 |
| abstract_inverted_index.presenting | 33 |
| abstract_inverted_index.underscore | 336 |
| abstract_inverted_index.worldwide. | 19 |
| abstract_inverted_index.Conclusions | 266 |
| abstract_inverted_index.application | 288 |
| abstract_inverted_index.challenges, | 43 |
| abstract_inverted_index.challenging | 154 |
| abstract_inverted_index.demonstrate | 223 |
| abstract_inverted_index.distortions | 325 |
| abstract_inverted_index.examination | 86 |
| abstract_inverted_index.feedforward | 104 |
| abstract_inverted_index.information | 260 |
| abstract_inverted_index.integration | 100 |
| abstract_inverted_index.mammography | 6 |
| abstract_inverted_index.methodology | 146 |
| abstract_inverted_index.outperforms | 228 |
| abstract_inverted_index.reliability | 334 |
| abstract_inverted_index.sensitivity | 207 |
| abstract_inverted_index.specialized | 31 |
| abstract_inverted_index.specificity | 211 |
| abstract_inverted_index.substantial | 34 |
| abstract_inverted_index.Furthermore, | 306 |
| abstract_inverted_index.incorporates | 97 |
| abstract_inverted_index.long‐range | 278 |
| abstract_inverted_index.mammographic | 25, 56 |
| abstract_inverted_index.multi‐head | 107 |
| abstract_inverted_index.Additionally, | 121 |
| abstract_inverted_index.architectural | 324 |
| abstract_inverted_index.dependencies, | 279 |
| abstract_inverted_index.radiologists. | 89 |
| abstract_inverted_index.significantly | 14 |
| abstract_inverted_index.specifically, | 180 |
| abstract_inverted_index.abnormalities, | 319 |
| abstract_inverted_index.calcification, | 322 |
| abstract_inverted_index.classification | 54 |
| abstract_inverted_index.classification. | 286 |
| abstract_inverted_index.differentiating | 139 |
| abstract_inverted_index.position‐wise | 103 |
| abstract_inverted_index.computer‐aided | 79 |
| abstract_inverted_index.time‐consuming | 28 |
| abstract_inverted_index.CNN‐Transformer | 47, 269 |
| abstract_inverted_index.self‐attention, | 108 |
| abstract_inverted_index.https://github.com/NabaviLab/PCTM | 264 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5010254642 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I140172145 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.99517588 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |