Hybrid weakly supervised learning with deep learning technique for detection of fake news from cyber propaganda Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.array.2023.100309
Due to the emergence of social networking sites and social media platforms, there is faster information dissemination to the public. Unverified information is widely disseminated across social media platforms without any apprehension about the accuracy of the information. The propagation of false news has imposed significant challenges on governments and society and has several adverse effects on many aspects of human life. Fake News is inaccurate information deliberately created and spread to the public. Accurate detection of fake news from cyber propagation is thus a significant and challenging issue that can be addressed through deep learning techniques. It is impossible to manually annotate large volumes of social media-generated data. In this research, a hybrid approach is proposed to detect fake news, novel weakly supervised learning is applied to provide labels to the unlabeled data, and detection of fake news is performed using Bi- GRU and Bi-LSTM deep learning techniques. Feature extraction was performed by utilizing TF-IDF and Count Vectorizers techniques. Bi-LSTM and Bi-GRU deep learning techniques with Weakly supervised SVM techniques provided an accuracy of 90% in detecting fake news. This approach of labeling large amounts of unlabeled data with weakly supervised learning and deep learning techniques for the detection of fake and real news is highly effective and efficient when there exist no labels to the data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.array.2023.100309
- OA Status
- gold
- Cited By
- 24
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384938300
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384938300Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.array.2023.100309Digital Object Identifier
- Title
-
Hybrid weakly supervised learning with deep learning technique for detection of fake news from cyber propagandaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-20Full publication date if available
- Authors
-
Liyakathunisa Syed, Abdullah Alsaeedi, Lina A. Alhuri, Hutaf R. AljohaniList of authors in order
- Landing page
-
https://doi.org/10.1016/j.array.2023.100309Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.array.2023.100309Direct OA link when available
- Concepts
-
Social media, Computer science, Deep learning, Artificial intelligence, Supervised learning, Fake news, Machine learning, Support vector machine, Labeled data, Semi-supervised learning, World Wide Web, Internet privacy, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 10, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384938300 |
|---|---|
| doi | https://doi.org/10.1016/j.array.2023.100309 |
| ids.doi | https://doi.org/10.1016/j.array.2023.100309 |
| ids.openalex | https://openalex.org/W4384938300 |
| fwci | 23.01725417 |
| type | article |
| title | Hybrid weakly supervised learning with deep learning technique for detection of fake news from cyber propaganda |
| biblio.issue | |
| biblio.volume | 19 |
| biblio.last_page | 100309 |
| biblio.first_page | 100309 |
| topics[0].id | https://openalex.org/T11147 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3312 |
| topics[0].subfield.display_name | Sociology and Political Science |
| topics[0].display_name | Misinformation and Its Impacts |
| topics[1].id | https://openalex.org/T11644 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Spam and Phishing Detection |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.989799976348877 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| concepts[0].id | https://openalex.org/C518677369 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7461181879043579 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[0].display_name | Social media |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7354269623756409 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6900634765625 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6796504259109497 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C136389625 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5635032057762146 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[4].display_name | Supervised learning |
| concepts[5].id | https://openalex.org/C2779756789 |
| concepts[5].level | 2 |
| concepts[5].score | 0.554588258266449 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q28549308 |
| concepts[5].display_name | Fake news |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5363487005233765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C12267149 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46944165229797363 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[7].display_name | Support vector machine |
| concepts[8].id | https://openalex.org/C2776145971 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4410886764526367 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[8].display_name | Labeled data |
| concepts[9].id | https://openalex.org/C58973888 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4404391944408417 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1041418 |
| concepts[9].display_name | Semi-supervised learning |
| concepts[10].id | https://openalex.org/C136764020 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2049720287322998 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[10].display_name | World Wide Web |
| concepts[11].id | https://openalex.org/C108827166 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18806421756744385 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[11].display_name | Internet privacy |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.18294581770896912 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/social-media |
| keywords[0].score | 0.7461181879043579 |
| keywords[0].display_name | Social media |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7354269623756409 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6900634765625 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6796504259109497 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/supervised-learning |
| keywords[4].score | 0.5635032057762146 |
| keywords[4].display_name | Supervised learning |
| keywords[5].id | https://openalex.org/keywords/fake-news |
| keywords[5].score | 0.554588258266449 |
| keywords[5].display_name | Fake news |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5363487005233765 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/support-vector-machine |
| keywords[7].score | 0.46944165229797363 |
| keywords[7].display_name | Support vector machine |
| keywords[8].id | https://openalex.org/keywords/labeled-data |
| keywords[8].score | 0.4410886764526367 |
| keywords[8].display_name | Labeled data |
| keywords[9].id | https://openalex.org/keywords/semi-supervised-learning |
| keywords[9].score | 0.4404391944408417 |
| keywords[9].display_name | Semi-supervised learning |
| keywords[10].id | https://openalex.org/keywords/world-wide-web |
| keywords[10].score | 0.2049720287322998 |
| keywords[10].display_name | World Wide Web |
| keywords[11].id | https://openalex.org/keywords/internet-privacy |
| keywords[11].score | 0.18806421756744385 |
| keywords[11].display_name | Internet privacy |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.18294581770896912 |
| keywords[12].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1016/j.array.2023.100309 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210194039 |
| locations[0].source.issn | 2590-0056 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2590-0056 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Array |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Array |
| locations[0].landing_page_url | https://doi.org/10.1016/j.array.2023.100309 |
| locations[1].id | pmh:oai:doaj.org/article:7ddda75808694236b40e60c95ef08ef4 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Array, Vol 19, Iss , Pp 100309- (2023) |
| locations[1].landing_page_url | https://doaj.org/article/7ddda75808694236b40e60c95ef08ef4 |
| locations[2].id | pmh:oai:repository.kaust.edu.sa:10754/693370 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401596 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | King Abdullah University of Science and Technology Repository (King Abdullah University of Science and Technology) |
| locations[2].source.host_organization | https://openalex.org/I71920554 |
| locations[2].source.host_organization_name | King Abdullah University of Science and Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I71920554 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/10754/693370 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5033660316 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4513-1795 |
| authorships[0].author.display_name | Liyakathunisa Syed |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer Science & Engineering |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I23075662 |
| authorships[0].affiliations[1].raw_affiliation_string | Taibah University, Madinah, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I23075662 |
| authorships[0].institutions[0].ror | https://ror.org/01xv1nn60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23075662 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Taibah University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liyakathunisa Syed |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science, College of Computer Science & Engineering, Taibah University, Madinah, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5074717609 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7974-7638 |
| authorships[1].author.display_name | Abdullah Alsaeedi |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer Science & Engineering |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I23075662 |
| authorships[1].affiliations[1].raw_affiliation_string | Taibah University, Madinah, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I23075662 |
| authorships[1].institutions[0].ror | https://ror.org/01xv1nn60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23075662 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | Taibah University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abdullah Alsaeedi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, College of Computer Science & Engineering, Taibah University, Madinah, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5057345469 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Lina A. Alhuri |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I23075662 |
| authorships[2].affiliations[0].raw_affiliation_string | Taibah University, Madinah, Saudi Arabia |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Computer Science, College of Computer Science & Engineering |
| authorships[2].institutions[0].id | https://openalex.org/I23075662 |
| authorships[2].institutions[0].ror | https://ror.org/01xv1nn60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I23075662 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | Taibah University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lina A. Alhuri |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, College of Computer Science & Engineering, Taibah University, Madinah, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5086562483 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hutaf R. Aljohani |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I23075662 |
| authorships[3].affiliations[0].raw_affiliation_string | Taibah University, Madinah, Saudi Arabia |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Computer Science, College of Computer Science & Engineering |
| authorships[3].institutions[0].id | https://openalex.org/I23075662 |
| authorships[3].institutions[0].ror | https://ror.org/01xv1nn60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I23075662 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Taibah University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hutaf R. Aljohani |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, College of Computer Science & Engineering, Taibah University, Madinah, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.array.2023.100309 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybrid weakly supervised learning with deep learning technique for detection of fake news from cyber propaganda |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11147 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3312 |
| primary_topic.subfield.display_name | Sociology and Political Science |
| primary_topic.display_name | Misinformation and Its Impacts |
| related_works | https://openalex.org/W4312414840, https://openalex.org/W34092691, https://openalex.org/W2794908468, https://openalex.org/W2531570999, https://openalex.org/W4206276646, https://openalex.org/W2943467239, https://openalex.org/W1571801203, https://openalex.org/W101422005, https://openalex.org/W192740413, https://openalex.org/W3004135598 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.array.2023.100309 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210194039 |
| best_oa_location.source.issn | 2590-0056 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2590-0056 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Array |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Array |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.array.2023.100309 |
| primary_location.id | doi:10.1016/j.array.2023.100309 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210194039 |
| primary_location.source.issn | 2590-0056 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2590-0056 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Array |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Array |
| primary_location.landing_page_url | https://doi.org/10.1016/j.array.2023.100309 |
| publication_date | 2023-07-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6758071916, https://openalex.org/W2981199473, https://openalex.org/W3081931428, https://openalex.org/W6774110209, https://openalex.org/W6769750465, https://openalex.org/W3033074691, https://openalex.org/W3007083472, https://openalex.org/W6786120795, https://openalex.org/W6755697072, https://openalex.org/W6785287362, https://openalex.org/W3153854677, https://openalex.org/W2746791238, https://openalex.org/W2085443648, https://openalex.org/W6785474550, https://openalex.org/W3011091101, https://openalex.org/W7066667914, https://openalex.org/W2751418808, https://openalex.org/W2250539671, https://openalex.org/W6759015836, https://openalex.org/W3033156234, https://openalex.org/W4255753398, https://openalex.org/W3034027410, https://openalex.org/W4237544127, https://openalex.org/W2136504847, https://openalex.org/W3132450769, https://openalex.org/W2769009638, https://openalex.org/W2909299092, https://openalex.org/W4242473064, https://openalex.org/W2998216295, https://openalex.org/W2596567068, https://openalex.org/W2626293262, https://openalex.org/W3100321043, https://openalex.org/W2984545517, https://openalex.org/W4231942494, https://openalex.org/W2903158431, https://openalex.org/W2582561810 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 84, 112 |
| abstract_inverted_index.In | 109 |
| abstract_inverted_index.It | 97 |
| abstract_inverted_index.an | 172 |
| abstract_inverted_index.be | 91 |
| abstract_inverted_index.by | 153 |
| abstract_inverted_index.in | 176 |
| abstract_inverted_index.is | 13, 22, 64, 82, 98, 115, 125, 139, 205 |
| abstract_inverted_index.no | 213 |
| abstract_inverted_index.of | 4, 35, 40, 59, 76, 105, 136, 174, 182, 186, 200 |
| abstract_inverted_index.on | 47, 56 |
| abstract_inverted_index.to | 1, 17, 71, 100, 117, 127, 130, 215 |
| abstract_inverted_index.90% | 175 |
| abstract_inverted_index.Bi- | 142 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.GRU | 143 |
| abstract_inverted_index.SVM | 169 |
| abstract_inverted_index.The | 38 |
| abstract_inverted_index.and | 8, 49, 51, 69, 86, 134, 144, 156, 161, 193, 202, 208 |
| abstract_inverted_index.any | 30 |
| abstract_inverted_index.can | 90 |
| abstract_inverted_index.for | 197 |
| abstract_inverted_index.has | 43, 52 |
| abstract_inverted_index.the | 2, 18, 33, 36, 72, 131, 198, 216 |
| abstract_inverted_index.was | 151 |
| abstract_inverted_index.Fake | 62 |
| abstract_inverted_index.News | 63 |
| abstract_inverted_index.This | 180 |
| abstract_inverted_index.data | 188 |
| abstract_inverted_index.deep | 94, 146, 163, 194 |
| abstract_inverted_index.fake | 77, 119, 137, 178, 201 |
| abstract_inverted_index.from | 79 |
| abstract_inverted_index.many | 57 |
| abstract_inverted_index.news | 42, 78, 138, 204 |
| abstract_inverted_index.real | 203 |
| abstract_inverted_index.that | 89 |
| abstract_inverted_index.this | 110 |
| abstract_inverted_index.thus | 83 |
| abstract_inverted_index.when | 210 |
| abstract_inverted_index.with | 166, 189 |
| abstract_inverted_index.Count | 157 |
| abstract_inverted_index.about | 32 |
| abstract_inverted_index.cyber | 80 |
| abstract_inverted_index.data, | 133 |
| abstract_inverted_index.data. | 108, 217 |
| abstract_inverted_index.exist | 212 |
| abstract_inverted_index.false | 41 |
| abstract_inverted_index.human | 60 |
| abstract_inverted_index.issue | 88 |
| abstract_inverted_index.large | 103, 184 |
| abstract_inverted_index.life. | 61 |
| abstract_inverted_index.media | 10, 27 |
| abstract_inverted_index.news, | 120 |
| abstract_inverted_index.news. | 179 |
| abstract_inverted_index.novel | 121 |
| abstract_inverted_index.sites | 7 |
| abstract_inverted_index.there | 12, 211 |
| abstract_inverted_index.using | 141 |
| abstract_inverted_index.Bi-GRU | 162 |
| abstract_inverted_index.TF-IDF | 155 |
| abstract_inverted_index.Weakly | 167 |
| abstract_inverted_index.across | 25 |
| abstract_inverted_index.detect | 118 |
| abstract_inverted_index.faster | 14 |
| abstract_inverted_index.highly | 206 |
| abstract_inverted_index.hybrid | 113 |
| abstract_inverted_index.labels | 129, 214 |
| abstract_inverted_index.social | 5, 9, 26, 106 |
| abstract_inverted_index.spread | 70 |
| abstract_inverted_index.weakly | 122, 190 |
| abstract_inverted_index.widely | 23 |
| abstract_inverted_index.Bi-LSTM | 145, 160 |
| abstract_inverted_index.Feature | 149 |
| abstract_inverted_index.adverse | 54 |
| abstract_inverted_index.amounts | 185 |
| abstract_inverted_index.applied | 126 |
| abstract_inverted_index.aspects | 58 |
| abstract_inverted_index.created | 68 |
| abstract_inverted_index.effects | 55 |
| abstract_inverted_index.imposed | 44 |
| abstract_inverted_index.provide | 128 |
| abstract_inverted_index.public. | 19, 73 |
| abstract_inverted_index.several | 53 |
| abstract_inverted_index.society | 50 |
| abstract_inverted_index.through | 93 |
| abstract_inverted_index.volumes | 104 |
| abstract_inverted_index.without | 29 |
| abstract_inverted_index.Accurate | 74 |
| abstract_inverted_index.accuracy | 34, 173 |
| abstract_inverted_index.annotate | 102 |
| abstract_inverted_index.approach | 114, 181 |
| abstract_inverted_index.labeling | 183 |
| abstract_inverted_index.learning | 95, 124, 147, 164, 192, 195 |
| abstract_inverted_index.manually | 101 |
| abstract_inverted_index.proposed | 116 |
| abstract_inverted_index.provided | 171 |
| abstract_inverted_index.addressed | 92 |
| abstract_inverted_index.detecting | 177 |
| abstract_inverted_index.detection | 75, 135, 199 |
| abstract_inverted_index.effective | 207 |
| abstract_inverted_index.efficient | 209 |
| abstract_inverted_index.emergence | 3 |
| abstract_inverted_index.performed | 140, 152 |
| abstract_inverted_index.platforms | 28 |
| abstract_inverted_index.research, | 111 |
| abstract_inverted_index.unlabeled | 132, 187 |
| abstract_inverted_index.utilizing | 154 |
| abstract_inverted_index.Unverified | 20 |
| abstract_inverted_index.challenges | 46 |
| abstract_inverted_index.extraction | 150 |
| abstract_inverted_index.impossible | 99 |
| abstract_inverted_index.inaccurate | 65 |
| abstract_inverted_index.networking | 6 |
| abstract_inverted_index.platforms, | 11 |
| abstract_inverted_index.supervised | 123, 168, 191 |
| abstract_inverted_index.techniques | 165, 170, 196 |
| abstract_inverted_index.Vectorizers | 158 |
| abstract_inverted_index.challenging | 87 |
| abstract_inverted_index.governments | 48 |
| abstract_inverted_index.information | 15, 21, 66 |
| abstract_inverted_index.propagation | 39, 81 |
| abstract_inverted_index.significant | 45, 85 |
| abstract_inverted_index.techniques. | 96, 148, 159 |
| abstract_inverted_index.apprehension | 31 |
| abstract_inverted_index.deliberately | 67 |
| abstract_inverted_index.disseminated | 24 |
| abstract_inverted_index.information. | 37 |
| abstract_inverted_index.dissemination | 16 |
| abstract_inverted_index.media-generated | 107 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5033660316 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I23075662 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.99027703 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |