Hybridizing Cross-Level Contextual and Attentive Representations for Remote Sensing Imagery Semantic Segmentation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/rs13152986
Semantic segmentation of remote sensing imagery is a fundamental task in intelligent interpretation. Since deep convolutional neural networks (DCNNs) performed considerable insight in learning implicit representations from data, numerous works in recent years have transferred the DCNN-based model to remote sensing data analysis. However, the wide-range observation areas, complex and diverse objects and illumination and imaging angle influence the pixels easily confused, leading to undesirable results. Therefore, a remote sensing imagery semantic segmentation neural network, named HCANet, is proposed to generate representative and discriminative representations for dense predictions. HCANet hybridizes cross-level contextual and attentive representations to emphasize the distinguishability of learned features. First of all, a cross-level contextual representation module (CCRM) is devised to exploit and harness the superpixel contextual information. Moreover, a hybrid representation enhancement module (HREM) is designed to fuse cross-level contextual and self-attentive representations flexibly. Furthermore, the decoder incorporates DUpsampling operation to boost the efficiency losslessly. The extensive experiments are implemented on the Vaihingen and Potsdam benchmarks. In addition, the results indicate that HCANet achieves excellent performance on overall accuracy and mean intersection over union. In addition, the ablation study further verifies the superiority of CCRM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs13152986
- https://www.mdpi.com/2072-4292/13/15/2986/pdf
- OA Status
- gold
- Cited By
- 29
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3189528951
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3189528951Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs13152986Digital Object Identifier
- Title
-
Hybridizing Cross-Level Contextual and Attentive Representations for Remote Sensing Imagery Semantic SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-29Full publication date if available
- Authors
-
Xin Li, Feng Xu, Runliang Xia, Xin Lyu, Hongmin Gao, Yao TongList of authors in order
- Landing page
-
https://doi.org/10.3390/rs13152986Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/13/15/2986/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/13/15/2986/pdfDirect OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Convolutional neural network, Discriminative model, Representation (politics), Pixel, Pattern recognition (psychology), Politics, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
29Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 8, 2023: 9, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3189528951 |
|---|---|
| doi | https://doi.org/10.3390/rs13152986 |
| ids.doi | https://doi.org/10.3390/rs13152986 |
| ids.mag | 3189528951 |
| ids.openalex | https://openalex.org/W3189528951 |
| fwci | 2.7324611 |
| type | article |
| title | Hybridizing Cross-Level Contextual and Attentive Representations for Remote Sensing Imagery Semantic Segmentation |
| awards[0].id | https://openalex.org/G7978753187 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2018YFC0407905 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G3964254256 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2018YFC0407105 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| awards[2].id | https://openalex.org/G8425871276 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 51679103 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G4523723020 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 51779100 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G5154677463 |
| awards[4].funder_id | https://openalex.org/F4320335777 |
| awards[4].display_name | |
| awards[4].funder_award_id | 2017YFC0405505 |
| awards[4].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 15 |
| biblio.volume | 13 |
| biblio.last_page | 2986 |
| biblio.first_page | 2986 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T13282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.996399998664856 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Automated Road and Building Extraction |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8004916310310364 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.652314305305481 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.623339056968689 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5699407458305359 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C97931131 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5690929889678955 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[4].display_name | Discriminative model |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5128989219665527 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C160633673 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4179350733757019 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[6].display_name | Pixel |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4083613157272339 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C94625758 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[8].display_name | Politics |
| concepts[9].id | https://openalex.org/C199539241 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[9].display_name | Law |
| concepts[10].id | https://openalex.org/C17744445 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[10].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8004916310310364 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.652314305305481 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.623339056968689 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5699407458305359 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/discriminative-model |
| keywords[4].score | 0.5690929889678955 |
| keywords[4].display_name | Discriminative model |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.5128989219665527 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/pixel |
| keywords[6].score | 0.4179350733757019 |
| keywords[6].display_name | Pixel |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4083613157272339 |
| keywords[7].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.3390/rs13152986 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/13/15/2986/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs13152986 |
| locations[1].id | pmh:oai:doaj.org/article:10cd51ad0db245b4b07455b3e06a4df7 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 13, Iss 15, p 2986 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/10cd51ad0db245b4b07455b3e06a4df7 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/13/15/2986/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 13; Issue 15; Pages: 2986 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs13152986 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5060642323 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0576-3181 |
| authorships[0].author.display_name | Xin Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210158179 |
| authorships[0].affiliations[1].raw_affiliation_string | Information Engineering Center, Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I163340411 |
| authorships[0].affiliations[2].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[0].institutions[0].id | https://openalex.org/I163340411 |
| authorships[0].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hohai University |
| authorships[0].institutions[1].id | https://openalex.org/I4210155611 |
| authorships[0].institutions[1].ror | https://ror.org/04e698d63 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210155611 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[0].institutions[2].id | https://openalex.org/I4210158179 |
| authorships[0].institutions[2].ror | https://ror.org/0506q7a98 |
| authorships[0].institutions[2].type | government |
| authorships[0].institutions[2].lineage | https://openalex.org/I4210155611, https://openalex.org/I4210158179 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Yellow River Institute of Hydraulic Research |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xin Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China, Information Engineering Center, Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[1].author.id | https://openalex.org/A5005047757 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2175-9943 |
| authorships[1].author.display_name | Feng Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I163340411 |
| authorships[1].affiliations[1].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[1].institutions[0].id | https://openalex.org/I163340411 |
| authorships[1].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hohai University |
| authorships[1].institutions[1].id | https://openalex.org/I4210155611 |
| authorships[1].institutions[1].ror | https://ror.org/04e698d63 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210155611 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Feng Xu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[2].author.id | https://openalex.org/A5001587479 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6957-8546 |
| authorships[2].author.display_name | Runliang Xia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210158179 |
| authorships[2].affiliations[0].raw_affiliation_string | Information Engineering Center, Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210158179 |
| authorships[2].institutions[0].ror | https://ror.org/0506q7a98 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210155611, https://openalex.org/I4210158179 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Yellow River Institute of Hydraulic Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Runliang Xia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Information Engineering Center, Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China |
| authorships[3].author.id | https://openalex.org/A5071995587 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1862-2070 |
| authorships[3].author.display_name | Xin Lyu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| authorships[3].affiliations[1].raw_affiliation_string | Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[3].institutions[0].id | https://openalex.org/I163340411 |
| authorships[3].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hohai University |
| authorships[3].institutions[1].id | https://openalex.org/I4210155611 |
| authorships[3].institutions[1].ror | https://ror.org/04e698d63 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210155611 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xin Lyu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[4].author.id | https://openalex.org/A5044826967 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8404-2464 |
| authorships[4].author.display_name | Hongmin Gao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[4].institutions[0].id | https://openalex.org/I163340411 |
| authorships[4].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Hohai University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hongmin Gao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[5].author.id | https://openalex.org/A5038569817 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7885-3922 |
| authorships[5].author.display_name | Yao Tong |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China |
| authorships[5].institutions[0].id | https://openalex.org/I38877650 |
| authorships[5].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhengzhou University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yao Tong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/13/15/2986/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hybridizing Cross-Level Contextual and Attentive Representations for Remote Sensing Imagery Semantic Segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2965546495, https://openalex.org/W4389116644, https://openalex.org/W2153315159, https://openalex.org/W3103844505, https://openalex.org/W259157601, https://openalex.org/W4205463238, https://openalex.org/W2761785940, https://openalex.org/W2110523656, https://openalex.org/W1482209366, https://openalex.org/W2521627374 |
| cited_by_count | 29 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs13152986 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/13/15/2986/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs13152986 |
| primary_location.id | doi:10.3390/rs13152986 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/13/15/2986/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs13152986 |
| publication_date | 2021-07-29 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2412588858, https://openalex.org/W2763196683, https://openalex.org/W2790482089, https://openalex.org/W3138564814, https://openalex.org/W2999545631, https://openalex.org/W3148302677, https://openalex.org/W2936703070, https://openalex.org/W3121754326, https://openalex.org/W3024167159, https://openalex.org/W2973244992, https://openalex.org/W2998217597, https://openalex.org/W3100231084, https://openalex.org/W3005621308, https://openalex.org/W6640054144, https://openalex.org/W2963881378, https://openalex.org/W3008339978, https://openalex.org/W1901129140, https://openalex.org/W2412782625, https://openalex.org/W2990392801, https://openalex.org/W2955058313, https://openalex.org/W2955813853, https://openalex.org/W2995766874, https://openalex.org/W3103092912, https://openalex.org/W2921781974, https://openalex.org/W2787614951, https://openalex.org/W3129770188, https://openalex.org/W2963378109, https://openalex.org/W2778539913, https://openalex.org/W2963659230, https://openalex.org/W3021074965, https://openalex.org/W6739901393, https://openalex.org/W2963420686, https://openalex.org/W2884585870, https://openalex.org/W2963091558, https://openalex.org/W2902540630, https://openalex.org/W2944418962, https://openalex.org/W6751733626, https://openalex.org/W2985754018, https://openalex.org/W3130788620, https://openalex.org/W3124255193, https://openalex.org/W3007268491, https://openalex.org/W3083065220, https://openalex.org/W3130455691, https://openalex.org/W3122507398, https://openalex.org/W2395611524, https://openalex.org/W3080724905, https://openalex.org/W2991465346, https://openalex.org/W3101896960 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 7, 67, 105, 122 |
| abstract_inverted_index.In | 160, 178 |
| abstract_inverted_index.in | 10, 22, 30 |
| abstract_inverted_index.is | 6, 77, 111, 128 |
| abstract_inverted_index.of | 2, 99, 103, 187 |
| abstract_inverted_index.on | 154, 170 |
| abstract_inverted_index.to | 38, 63, 79, 95, 113, 130, 144 |
| abstract_inverted_index.The | 149 |
| abstract_inverted_index.and | 49, 52, 54, 82, 92, 115, 134, 157, 173 |
| abstract_inverted_index.are | 152 |
| abstract_inverted_index.for | 85 |
| abstract_inverted_index.the | 35, 44, 58, 97, 117, 139, 146, 155, 162, 180, 185 |
| abstract_inverted_index.all, | 104 |
| abstract_inverted_index.data | 41 |
| abstract_inverted_index.deep | 14 |
| abstract_inverted_index.from | 26 |
| abstract_inverted_index.fuse | 131 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.mean | 174 |
| abstract_inverted_index.over | 176 |
| abstract_inverted_index.task | 9 |
| abstract_inverted_index.that | 165 |
| abstract_inverted_index.CCRM. | 188 |
| abstract_inverted_index.First | 102 |
| abstract_inverted_index.Since | 13 |
| abstract_inverted_index.angle | 56 |
| abstract_inverted_index.boost | 145 |
| abstract_inverted_index.data, | 27 |
| abstract_inverted_index.dense | 86 |
| abstract_inverted_index.model | 37 |
| abstract_inverted_index.named | 75 |
| abstract_inverted_index.study | 182 |
| abstract_inverted_index.works | 29 |
| abstract_inverted_index.years | 32 |
| abstract_inverted_index.(CCRM) | 110 |
| abstract_inverted_index.(HREM) | 127 |
| abstract_inverted_index.HCANet | 88, 166 |
| abstract_inverted_index.areas, | 47 |
| abstract_inverted_index.easily | 60 |
| abstract_inverted_index.hybrid | 123 |
| abstract_inverted_index.module | 109, 126 |
| abstract_inverted_index.neural | 16, 73 |
| abstract_inverted_index.pixels | 59 |
| abstract_inverted_index.recent | 31 |
| abstract_inverted_index.remote | 3, 39, 68 |
| abstract_inverted_index.union. | 177 |
| abstract_inverted_index.(DCNNs) | 18 |
| abstract_inverted_index.HCANet, | 76 |
| abstract_inverted_index.Potsdam | 158 |
| abstract_inverted_index.complex | 48 |
| abstract_inverted_index.decoder | 140 |
| abstract_inverted_index.devised | 112 |
| abstract_inverted_index.diverse | 50 |
| abstract_inverted_index.exploit | 114 |
| abstract_inverted_index.further | 183 |
| abstract_inverted_index.harness | 116 |
| abstract_inverted_index.imagery | 5, 70 |
| abstract_inverted_index.imaging | 55 |
| abstract_inverted_index.insight | 21 |
| abstract_inverted_index.leading | 62 |
| abstract_inverted_index.learned | 100 |
| abstract_inverted_index.objects | 51 |
| abstract_inverted_index.overall | 171 |
| abstract_inverted_index.results | 163 |
| abstract_inverted_index.sensing | 4, 40, 69 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.Semantic | 0 |
| abstract_inverted_index.ablation | 181 |
| abstract_inverted_index.accuracy | 172 |
| abstract_inverted_index.achieves | 167 |
| abstract_inverted_index.designed | 129 |
| abstract_inverted_index.generate | 80 |
| abstract_inverted_index.implicit | 24 |
| abstract_inverted_index.indicate | 164 |
| abstract_inverted_index.learning | 23 |
| abstract_inverted_index.network, | 74 |
| abstract_inverted_index.networks | 17 |
| abstract_inverted_index.numerous | 28 |
| abstract_inverted_index.proposed | 78 |
| abstract_inverted_index.results. | 65 |
| abstract_inverted_index.semantic | 71 |
| abstract_inverted_index.verifies | 184 |
| abstract_inverted_index.Moreover, | 121 |
| abstract_inverted_index.Vaihingen | 156 |
| abstract_inverted_index.addition, | 161, 179 |
| abstract_inverted_index.analysis. | 42 |
| abstract_inverted_index.attentive | 93 |
| abstract_inverted_index.confused, | 61 |
| abstract_inverted_index.emphasize | 96 |
| abstract_inverted_index.excellent | 168 |
| abstract_inverted_index.extensive | 150 |
| abstract_inverted_index.features. | 101 |
| abstract_inverted_index.flexibly. | 137 |
| abstract_inverted_index.influence | 57 |
| abstract_inverted_index.operation | 143 |
| abstract_inverted_index.performed | 19 |
| abstract_inverted_index.DCNN-based | 36 |
| abstract_inverted_index.Therefore, | 66 |
| abstract_inverted_index.contextual | 91, 107, 119, 133 |
| abstract_inverted_index.efficiency | 147 |
| abstract_inverted_index.hybridizes | 89 |
| abstract_inverted_index.superpixel | 118 |
| abstract_inverted_index.wide-range | 45 |
| abstract_inverted_index.DUpsampling | 142 |
| abstract_inverted_index.benchmarks. | 159 |
| abstract_inverted_index.cross-level | 90, 106, 132 |
| abstract_inverted_index.enhancement | 125 |
| abstract_inverted_index.experiments | 151 |
| abstract_inverted_index.fundamental | 8 |
| abstract_inverted_index.implemented | 153 |
| abstract_inverted_index.intelligent | 11 |
| abstract_inverted_index.losslessly. | 148 |
| abstract_inverted_index.observation | 46 |
| abstract_inverted_index.performance | 169 |
| abstract_inverted_index.superiority | 186 |
| abstract_inverted_index.transferred | 34 |
| abstract_inverted_index.undesirable | 64 |
| abstract_inverted_index.Furthermore, | 138 |
| abstract_inverted_index.considerable | 20 |
| abstract_inverted_index.illumination | 53 |
| abstract_inverted_index.incorporates | 141 |
| abstract_inverted_index.information. | 120 |
| abstract_inverted_index.intersection | 175 |
| abstract_inverted_index.predictions. | 87 |
| abstract_inverted_index.segmentation | 1, 72 |
| abstract_inverted_index.convolutional | 15 |
| abstract_inverted_index.discriminative | 83 |
| abstract_inverted_index.representation | 108, 124 |
| abstract_inverted_index.representative | 81 |
| abstract_inverted_index.self-attentive | 135 |
| abstract_inverted_index.interpretation. | 12 |
| abstract_inverted_index.representations | 25, 84, 94, 136 |
| abstract_inverted_index.distinguishability | 98 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5005047757 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.90690284 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |