HyColor: An Efficient Heuristic Algorithm for Graph Coloring Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.07373
The graph coloring problem (GCP) is a classic combinatorial optimization problem that aims to find the minimum number of colors assigned to vertices of a graph such that no two adjacent vertices receive the same color. GCP has been extensively studied by researchers from various fields, including mathematics, computer science, and biological science. Due to the NP-hard nature, many heuristic algorithms have been proposed to solve GCP. However, existing GCP algorithms focus on either small hard graphs or large-scale sparse graphs (with up to 10^7 vertices). This paper presents an efficient hybrid heuristic algorithm for GCP, named HyColor, which excels in handling large-scale sparse graphs while achieving impressive results on small dense graphs. The efficiency of HyColor comes from the following three aspects: a local decision strategy to improve the lower bound on the chromatic number; a graph-reduction strategy to reduce the working graph; and a k-core and mixed degree-based greedy heuristic for efficiently coloring graphs. HyColor is evaluated against three state-of-the-art GCP algorithms across four benchmarks, comprising three large-scale sparse graph benchmarks and one small dense graph benchmark, totaling 209 instances. The results demonstrate that HyColor consistently outperforms existing heuristic algorithms in both solution accuracy and computational efficiency for the majority of instances. Notably, HyColor achieved the best solutions in 194 instances (over 93%), with 34 of these solutions significantly surpassing those of other algorithms. Furthermore, HyColor successfully determined the chromatic number and achieved optimal coloring in 128 instances.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.07373
- https://arxiv.org/pdf/2506.07373
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417097932
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417097932Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.07373Digital Object Identifier
- Title
-
HyColor: An Efficient Heuristic Algorithm for Graph ColoringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-09Full publication date if available
- Authors
-
Enqiang Zhu, Yu Zhang, Haopeng Sun, Wei Zhang, Witold Pedrycz, Chanjuan Liu, Jin XuList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.07373Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.07373Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.07373Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417097932 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.07373 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.07373 |
| ids.openalex | https://openalex.org/W4417097932 |
| fwci | |
| type | preprint |
| title | HyColor: An Efficient Heuristic Algorithm for Graph Coloring |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.07373 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.07373 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.07373 |
| locations[1].id | doi:10.48550/arxiv.2506.07373 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.07373 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004232829 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5245-7905 |
| authorships[0].author.display_name | Enqiang Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Enqiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100617203 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0060-4544 |
| authorships[1].author.display_name | Yu Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Yu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5031755924 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5109-0304 |
| authorships[2].author.display_name | Haopeng Sun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sun, Haopeng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5000814233 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0195-2666 |
| authorships[3].author.display_name | Wei Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wei, Ziqi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5003799782 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9335-9930 |
| authorships[4].author.display_name | Witold Pedrycz |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pedrycz, Witold |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5053853994 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-0342-5891 |
| authorships[5].author.display_name | Chanjuan Liu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liu, Chanjuan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101605362 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6021-5551 |
| authorships[6].author.display_name | Jin Xu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xu, Jin |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.07373 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HyColor: An Efficient Heuristic Algorithm for Graph Coloring |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:45:41.426853 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.07373 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.07373 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.07373 |
| primary_location.id | pmh:oai:arXiv.org:2506.07373 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.07373 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.07373 |
| publication_date | 2025-06-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 24, 123, 136, 145 |
| abstract_inverted_index.34 | 216 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.by | 41 |
| abstract_inverted_index.in | 100, 192, 210, 237 |
| abstract_inverted_index.is | 5, 157 |
| abstract_inverted_index.no | 28 |
| abstract_inverted_index.of | 18, 23, 115, 202, 217, 223 |
| abstract_inverted_index.on | 72, 109, 132 |
| abstract_inverted_index.or | 77 |
| abstract_inverted_index.to | 13, 21, 54, 64, 83, 127, 139 |
| abstract_inverted_index.up | 82 |
| abstract_inverted_index.128 | 238 |
| abstract_inverted_index.194 | 211 |
| abstract_inverted_index.209 | 180 |
| abstract_inverted_index.Due | 53 |
| abstract_inverted_index.GCP | 36, 69, 162 |
| abstract_inverted_index.The | 0, 113, 182 |
| abstract_inverted_index.and | 50, 144, 147, 173, 196, 233 |
| abstract_inverted_index.for | 94, 152, 199 |
| abstract_inverted_index.has | 37 |
| abstract_inverted_index.one | 174 |
| abstract_inverted_index.the | 15, 33, 55, 119, 129, 133, 141, 200, 207, 230 |
| abstract_inverted_index.two | 29 |
| abstract_inverted_index.10^7 | 84 |
| abstract_inverted_index.GCP, | 95 |
| abstract_inverted_index.GCP. | 66 |
| abstract_inverted_index.This | 86 |
| abstract_inverted_index.aims | 12 |
| abstract_inverted_index.been | 38, 62 |
| abstract_inverted_index.best | 208 |
| abstract_inverted_index.both | 193 |
| abstract_inverted_index.find | 14 |
| abstract_inverted_index.four | 165 |
| abstract_inverted_index.from | 43, 118 |
| abstract_inverted_index.hard | 75 |
| abstract_inverted_index.have | 61 |
| abstract_inverted_index.many | 58 |
| abstract_inverted_index.same | 34 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.that | 11, 27, 185 |
| abstract_inverted_index.with | 215 |
| abstract_inverted_index.(GCP) | 4 |
| abstract_inverted_index.(over | 213 |
| abstract_inverted_index.(with | 81 |
| abstract_inverted_index.93%), | 214 |
| abstract_inverted_index.bound | 131 |
| abstract_inverted_index.comes | 117 |
| abstract_inverted_index.dense | 111, 176 |
| abstract_inverted_index.focus | 71 |
| abstract_inverted_index.graph | 1, 25, 171, 177 |
| abstract_inverted_index.local | 124 |
| abstract_inverted_index.lower | 130 |
| abstract_inverted_index.mixed | 148 |
| abstract_inverted_index.named | 96 |
| abstract_inverted_index.other | 224 |
| abstract_inverted_index.paper | 87 |
| abstract_inverted_index.small | 74, 110, 175 |
| abstract_inverted_index.solve | 65 |
| abstract_inverted_index.these | 218 |
| abstract_inverted_index.those | 222 |
| abstract_inverted_index.three | 121, 160, 168 |
| abstract_inverted_index.which | 98 |
| abstract_inverted_index.while | 105 |
| abstract_inverted_index.across | 164 |
| abstract_inverted_index.color. | 35 |
| abstract_inverted_index.colors | 19 |
| abstract_inverted_index.either | 73 |
| abstract_inverted_index.excels | 99 |
| abstract_inverted_index.graph; | 143 |
| abstract_inverted_index.graphs | 76, 80, 104 |
| abstract_inverted_index.greedy | 150 |
| abstract_inverted_index.hybrid | 91 |
| abstract_inverted_index.k-core | 146 |
| abstract_inverted_index.number | 17, 232 |
| abstract_inverted_index.reduce | 140 |
| abstract_inverted_index.sparse | 79, 103, 170 |
| abstract_inverted_index.HyColor | 116, 156, 186, 205, 227 |
| abstract_inverted_index.NP-hard | 56 |
| abstract_inverted_index.against | 159 |
| abstract_inverted_index.classic | 7 |
| abstract_inverted_index.fields, | 45 |
| abstract_inverted_index.graphs. | 112, 155 |
| abstract_inverted_index.improve | 128 |
| abstract_inverted_index.minimum | 16 |
| abstract_inverted_index.nature, | 57 |
| abstract_inverted_index.number; | 135 |
| abstract_inverted_index.optimal | 235 |
| abstract_inverted_index.problem | 3, 10 |
| abstract_inverted_index.receive | 32 |
| abstract_inverted_index.results | 108, 183 |
| abstract_inverted_index.studied | 40 |
| abstract_inverted_index.various | 44 |
| abstract_inverted_index.working | 142 |
| abstract_inverted_index.However, | 67 |
| abstract_inverted_index.HyColor, | 97 |
| abstract_inverted_index.Notably, | 204 |
| abstract_inverted_index.accuracy | 195 |
| abstract_inverted_index.achieved | 206, 234 |
| abstract_inverted_index.adjacent | 30 |
| abstract_inverted_index.aspects: | 122 |
| abstract_inverted_index.assigned | 20 |
| abstract_inverted_index.coloring | 2, 154, 236 |
| abstract_inverted_index.computer | 48 |
| abstract_inverted_index.decision | 125 |
| abstract_inverted_index.existing | 68, 189 |
| abstract_inverted_index.handling | 101 |
| abstract_inverted_index.majority | 201 |
| abstract_inverted_index.presents | 88 |
| abstract_inverted_index.proposed | 63 |
| abstract_inverted_index.science, | 49 |
| abstract_inverted_index.science. | 52 |
| abstract_inverted_index.solution | 194 |
| abstract_inverted_index.strategy | 126, 138 |
| abstract_inverted_index.totaling | 179 |
| abstract_inverted_index.vertices | 22, 31 |
| abstract_inverted_index.achieving | 106 |
| abstract_inverted_index.algorithm | 93 |
| abstract_inverted_index.chromatic | 134, 231 |
| abstract_inverted_index.efficient | 90 |
| abstract_inverted_index.evaluated | 158 |
| abstract_inverted_index.following | 120 |
| abstract_inverted_index.heuristic | 59, 92, 151, 190 |
| abstract_inverted_index.including | 46 |
| abstract_inverted_index.instances | 212 |
| abstract_inverted_index.solutions | 209, 219 |
| abstract_inverted_index.algorithms | 60, 70, 163, 191 |
| abstract_inverted_index.benchmark, | 178 |
| abstract_inverted_index.benchmarks | 172 |
| abstract_inverted_index.biological | 51 |
| abstract_inverted_index.comprising | 167 |
| abstract_inverted_index.determined | 229 |
| abstract_inverted_index.efficiency | 114, 198 |
| abstract_inverted_index.impressive | 107 |
| abstract_inverted_index.instances. | 181, 203, 239 |
| abstract_inverted_index.surpassing | 221 |
| abstract_inverted_index.vertices). | 85 |
| abstract_inverted_index.algorithms. | 225 |
| abstract_inverted_index.benchmarks, | 166 |
| abstract_inverted_index.demonstrate | 184 |
| abstract_inverted_index.efficiently | 153 |
| abstract_inverted_index.extensively | 39 |
| abstract_inverted_index.large-scale | 78, 102, 169 |
| abstract_inverted_index.outperforms | 188 |
| abstract_inverted_index.researchers | 42 |
| abstract_inverted_index.Furthermore, | 226 |
| abstract_inverted_index.consistently | 187 |
| abstract_inverted_index.degree-based | 149 |
| abstract_inverted_index.mathematics, | 47 |
| abstract_inverted_index.optimization | 9 |
| abstract_inverted_index.successfully | 228 |
| abstract_inverted_index.combinatorial | 8 |
| abstract_inverted_index.computational | 197 |
| abstract_inverted_index.significantly | 220 |
| abstract_inverted_index.graph-reduction | 137 |
| abstract_inverted_index.state-of-the-art | 161 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |