Hyper Parameter Tuning In Convolutional Neural Networks for Precise Tumor Image Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202503.0734.v1
Background/Objectives: The human brain regulates physiological processes, cognitive functions, and emotional responses. Brain-related conditions, such as neurological disorders, strokes, and tumors, are complex and pose significant challenges to medical professionals. Among these, brain tumors are particularly critical due to their impact on essential functions and the difficulty in achieving accurate diagnosis and classification. This study aims to explore the application of deep learning models in brain tumor image classification, focusing on improving diagnostic accuracy through model optimization. Methods: This research conducts a comparative analysis of four deep learning architectures: CNN, VGG-19, Inception V3, and ResNet-10. Each model's performance is evaluated on validation accuracy over ten epochs, both with and without hyper parameter tuning. Key hyper parameters, such as learning rate and optimizer selection, are adjusted to enhance model performance. Results: The CNN achieved a baseline validation accuracy of 77.86%, which improved to 89.31% after hyper parameter tuning. VGG-19, with tuning, reached a validation accuracy of 70.23%. ResNet-10 performed the worst, maintaining an accuracy of 51.91%, even with tuning. Inception V3 showed moderate performance, achieving a validation accuracy of 55.73%. The results highlight the significant impact of hyper parameter optimization on model accuracy. Conclusions: Fine-tuning hyper parameters and selecting appropriate models are critical to improving the accuracy of brain tumor classification. These findings provide insights into developing practical and efficient deep learning models, paving the way for advancements in diagnostic imaging, early detection, and clinical neuroscience.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202503.0734.v1
- https://www.preprints.org/frontend/manuscript/4b7025ef0eb21b53672e360786cde556/download_pub
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408350368
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408350368Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202503.0734.v1Digital Object Identifier
- Title
-
Hyper Parameter Tuning In Convolutional Neural Networks for Precise Tumor Image ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-11Full publication date if available
- Authors
-
Saddam Hussain, Jawwad Sami Ur Rahman, Tayyaba Naz, Faraz Akram, Syed Sohail Ahmed, Sheharyar Khan, Sadam Hussain NooraniList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202503.0734.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/4b7025ef0eb21b53672e360786cde556/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/4b7025ef0eb21b53672e360786cde556/download_pubDirect OA link when available
- Concepts
-
Convolutional neural network, Computer science, Artificial intelligence, Image (mathematics), Contextual image classification, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408350368 |
|---|---|
| doi | https://doi.org/10.20944/preprints202503.0734.v1 |
| ids.doi | https://doi.org/10.20944/preprints202503.0734.v1 |
| ids.openalex | https://openalex.org/W4408350368 |
| fwci | 0.0 |
| type | preprint |
| title | Hyper Parameter Tuning In Convolutional Neural Networks for Precise Tumor Image Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.97079998254776 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9506999850273132 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7889344692230225 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6336321234703064 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5481822490692139 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C115961682 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5428838729858398 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[3].display_name | Image (mathematics) |
| concepts[4].id | https://openalex.org/C75294576 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5201826095581055 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[4].display_name | Contextual image classification |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46709340810775757 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7889344692230225 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6336321234703064 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5481822490692139 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/image |
| keywords[3].score | 0.5428838729858398 |
| keywords[3].display_name | Image (mathematics) |
| keywords[4].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[4].score | 0.5201826095581055 |
| keywords[4].display_name | Contextual image classification |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.46709340810775757 |
| keywords[5].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.20944/preprints202503.0734.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/4b7025ef0eb21b53672e360786cde556/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202503.0734.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100698089 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1523-1330 |
| authorships[0].author.display_name | Saddam Hussain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Syed Muddusir Hussain |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013292941 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1945-3339 |
| authorships[1].author.display_name | Jawwad Sami Ur Rahman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jawwad Sami Ur Rahman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103161086 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2720-3137 |
| authorships[2].author.display_name | Tayyaba Naz |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tayaba Naz |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5048041951 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1483-1801 |
| authorships[3].author.display_name | Faraz Akram |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Faraz Akram |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102773655 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5489-9099 |
| authorships[4].author.display_name | Syed Sohail Ahmed |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Syed Sohail Ahmed |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101149359 |
| authorships[5].author.orcid | https://orcid.org/0009-0006-0261-9642 |
| authorships[5].author.display_name | Sheharyar Khan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sheharyar Khan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5026262902 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Sadam Hussain Noorani |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Sadam Hussain Noorani |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/4b7025ef0eb21b53672e360786cde556/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hyper Parameter Tuning In Convolutional Neural Networks for Precise Tumor Image Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.97079998254776 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W2911497689, https://openalex.org/W2952813363, https://openalex.org/W2963346891, https://openalex.org/W4360783045, https://openalex.org/W2770149305, https://openalex.org/W3167930666, https://openalex.org/W3014952856, https://openalex.org/W3010730661 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202503.0734.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/4b7025ef0eb21b53672e360786cde556/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202503.0734.v1 |
| primary_location.id | doi:10.20944/preprints202503.0734.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/4b7025ef0eb21b53672e360786cde556/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202503.0734.v1 |
| publication_date | 2025-03-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 81, 133, 151, 174 |
| abstract_inverted_index.V3 | 169 |
| abstract_inverted_index.an | 161 |
| abstract_inverted_index.as | 15, 117 |
| abstract_inverted_index.in | 47, 64, 227 |
| abstract_inverted_index.is | 98 |
| abstract_inverted_index.of | 60, 84, 137, 154, 163, 177, 185, 206 |
| abstract_inverted_index.on | 41, 70, 100, 189 |
| abstract_inverted_index.to | 27, 38, 56, 125, 141, 202 |
| abstract_inverted_index.CNN | 131 |
| abstract_inverted_index.Key | 113 |
| abstract_inverted_index.The | 1, 130, 179 |
| abstract_inverted_index.V3, | 92 |
| abstract_inverted_index.and | 9, 19, 23, 44, 51, 93, 108, 120, 196, 217, 232 |
| abstract_inverted_index.are | 21, 34, 123, 200 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 225 |
| abstract_inverted_index.ten | 104 |
| abstract_inverted_index.the | 45, 58, 158, 182, 204, 223 |
| abstract_inverted_index.way | 224 |
| abstract_inverted_index.CNN, | 89 |
| abstract_inverted_index.Each | 95 |
| abstract_inverted_index.This | 53, 78 |
| abstract_inverted_index.aims | 55 |
| abstract_inverted_index.both | 106 |
| abstract_inverted_index.deep | 61, 86, 219 |
| abstract_inverted_index.even | 165 |
| abstract_inverted_index.four | 85 |
| abstract_inverted_index.into | 214 |
| abstract_inverted_index.over | 103 |
| abstract_inverted_index.pose | 24 |
| abstract_inverted_index.rate | 119 |
| abstract_inverted_index.such | 14, 116 |
| abstract_inverted_index.with | 107, 148, 166 |
| abstract_inverted_index.Among | 30 |
| abstract_inverted_index.These | 210 |
| abstract_inverted_index.after | 143 |
| abstract_inverted_index.brain | 3, 32, 65, 207 |
| abstract_inverted_index.early | 230 |
| abstract_inverted_index.human | 2 |
| abstract_inverted_index.hyper | 110, 114, 144, 186, 194 |
| abstract_inverted_index.image | 67 |
| abstract_inverted_index.model | 75, 127, 190 |
| abstract_inverted_index.study | 54 |
| abstract_inverted_index.their | 39 |
| abstract_inverted_index.tumor | 66, 208 |
| abstract_inverted_index.which | 139 |
| abstract_inverted_index.89.31% | 142 |
| abstract_inverted_index.impact | 40, 184 |
| abstract_inverted_index.models | 63, 199 |
| abstract_inverted_index.paving | 222 |
| abstract_inverted_index.showed | 170 |
| abstract_inverted_index.these, | 31 |
| abstract_inverted_index.tumors | 33 |
| abstract_inverted_index.worst, | 159 |
| abstract_inverted_index.51.91%, | 164 |
| abstract_inverted_index.55.73%. | 178 |
| abstract_inverted_index.70.23%. | 155 |
| abstract_inverted_index.77.86%, | 138 |
| abstract_inverted_index.VGG-19, | 90, 147 |
| abstract_inverted_index.complex | 22 |
| abstract_inverted_index.enhance | 126 |
| abstract_inverted_index.epochs, | 105 |
| abstract_inverted_index.explore | 57 |
| abstract_inverted_index.medical | 28 |
| abstract_inverted_index.models, | 221 |
| abstract_inverted_index.provide | 212 |
| abstract_inverted_index.reached | 150 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.through | 74 |
| abstract_inverted_index.tumors, | 20 |
| abstract_inverted_index.tuning, | 149 |
| abstract_inverted_index.tuning. | 112, 146, 167 |
| abstract_inverted_index.without | 109 |
| abstract_inverted_index.Methods: | 77 |
| abstract_inverted_index.Results: | 129 |
| abstract_inverted_index.accuracy | 73, 102, 136, 153, 162, 176, 205 |
| abstract_inverted_index.accurate | 49 |
| abstract_inverted_index.achieved | 132 |
| abstract_inverted_index.adjusted | 124 |
| abstract_inverted_index.analysis | 83 |
| abstract_inverted_index.baseline | 134 |
| abstract_inverted_index.clinical | 233 |
| abstract_inverted_index.conducts | 80 |
| abstract_inverted_index.critical | 36, 201 |
| abstract_inverted_index.findings | 211 |
| abstract_inverted_index.focusing | 69 |
| abstract_inverted_index.imaging, | 229 |
| abstract_inverted_index.improved | 140 |
| abstract_inverted_index.insights | 213 |
| abstract_inverted_index.learning | 62, 87, 118, 220 |
| abstract_inverted_index.moderate | 171 |
| abstract_inverted_index.research | 79 |
| abstract_inverted_index.strokes, | 18 |
| abstract_inverted_index.Inception | 91, 168 |
| abstract_inverted_index.ResNet-10 | 156 |
| abstract_inverted_index.accuracy. | 191 |
| abstract_inverted_index.achieving | 48, 173 |
| abstract_inverted_index.cognitive | 7 |
| abstract_inverted_index.diagnosis | 50 |
| abstract_inverted_index.efficient | 218 |
| abstract_inverted_index.emotional | 10 |
| abstract_inverted_index.essential | 42 |
| abstract_inverted_index.evaluated | 99 |
| abstract_inverted_index.functions | 43 |
| abstract_inverted_index.highlight | 181 |
| abstract_inverted_index.improving | 71, 203 |
| abstract_inverted_index.optimizer | 121 |
| abstract_inverted_index.parameter | 111, 145, 187 |
| abstract_inverted_index.performed | 157 |
| abstract_inverted_index.practical | 216 |
| abstract_inverted_index.regulates | 4 |
| abstract_inverted_index.selecting | 197 |
| abstract_inverted_index.ResNet-10. | 94 |
| abstract_inverted_index.challenges | 26 |
| abstract_inverted_index.detection, | 231 |
| abstract_inverted_index.developing | 215 |
| abstract_inverted_index.diagnostic | 72, 228 |
| abstract_inverted_index.difficulty | 46 |
| abstract_inverted_index.disorders, | 17 |
| abstract_inverted_index.functions, | 8 |
| abstract_inverted_index.parameters | 195 |
| abstract_inverted_index.processes, | 6 |
| abstract_inverted_index.responses. | 11 |
| abstract_inverted_index.selection, | 122 |
| abstract_inverted_index.validation | 101, 135, 152, 175 |
| abstract_inverted_index.Fine-tuning | 193 |
| abstract_inverted_index.application | 59 |
| abstract_inverted_index.appropriate | 198 |
| abstract_inverted_index.comparative | 82 |
| abstract_inverted_index.conditions, | 13 |
| abstract_inverted_index.maintaining | 160 |
| abstract_inverted_index.parameters, | 115 |
| abstract_inverted_index.performance | 97 |
| abstract_inverted_index.significant | 25, 183 |
| abstract_inverted_index.Conclusions: | 192 |
| abstract_inverted_index.advancements | 226 |
| abstract_inverted_index.neurological | 16 |
| abstract_inverted_index.optimization | 188 |
| abstract_inverted_index.particularly | 35 |
| abstract_inverted_index.performance, | 172 |
| abstract_inverted_index.performance. | 128 |
| abstract_inverted_index.Brain-related | 12 |
| abstract_inverted_index.neuroscience. | 234 |
| abstract_inverted_index.optimization. | 76 |
| abstract_inverted_index.physiological | 5 |
| abstract_inverted_index.architectures: | 88 |
| abstract_inverted_index.professionals. | 29 |
| abstract_inverted_index.classification, | 68 |
| abstract_inverted_index.classification. | 52, 209 |
| abstract_inverted_index.model's | 96 |
| abstract_inverted_index.Background/Objectives: | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.09534706 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |