Hyperactive learning for data-driven interatomic potentials Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2248548/v1
Data-driven interatomic potentials have emerged as a powerful class of surrogate models for ab initio potential energy surfaces that are able to reliably predict macroscopic properties with experimental accuracy. In generating accurate and transferable potentials the most time-consuming and arguably most important task is generating the training set, which still requires significant expert user input. To accelerate this process, this work presents hyperactive learning (HAL), a framework for formulating an accelerated sampling algorithm specifically for the task of training database generation. The key idea is to start from a physically motivated sampler (e.g., molecular dynamics) and add a biasing term that drives the system towards high uncertainty and thus to unseen training configurations. Building on this framework, general protocols for building training databases for alloys and polymers leveraging the HAL framework will be presented. For alloys, ACE potentials for AlSi10 are created by fitting to a minimal HAL-generated database containing 88 configurations (32 atoms each) with fast evaluation times of <100 μs/atom/cpu-core. These potentials are demonstrated to predict the melting temperature with excellent accuracy. For polymers, a HAL database is built using ACE, able to determine the density of a long polyethylene glycol (PEG) polymer formed of 200 monomer units with experimental accuracy by only fitting to small isolated PEG polymers with sizes ranging from 2 to 32.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2248548/v1
- https://www.researchsquare.com/article/rs-2248548/latest.pdf
- OA Status
- green
- Cited By
- 11
- References
- 85
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309390910
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309390910Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2248548/v1Digital Object Identifier
- Title
-
Hyperactive learning for data-driven interatomic potentialsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-18Full publication date if available
- Authors
-
Cas van der Oord, Matthias Sachs, David Kovacs, Christoph Ortner, Gábor CśanyiList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2248548/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2248548/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2248548/latest.pdfDirect OA link when available
- Concepts
-
Interatomic potential, Computer science, Psychology, Physics, Molecular dynamics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 8Per-year citation counts (last 5 years)
- References (count)
-
85Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309390910 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2248548/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2248548/v1 |
| ids.openalex | https://openalex.org/W4309390910 |
| fwci | 1.3530171 |
| type | preprint |
| title | Hyperactive learning for data-driven interatomic potentials |
| awards[0].id | https://openalex.org/G3257381754 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/K014560/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9900000095367432 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T12808 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9710999727249146 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Ferroelectric and Negative Capacitance Devices |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776372370 |
| concepts[0].level | 3 |
| concepts[0].score | 0.48069292306900024 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3399989 |
| concepts[0].display_name | Interatomic potential |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3912542164325714 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C15744967 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3631551265716553 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[2].display_name | Psychology |
| concepts[3].id | https://openalex.org/C121332964 |
| concepts[3].level | 0 |
| concepts[3].score | 0.2749420404434204 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[3].display_name | Physics |
| concepts[4].id | https://openalex.org/C59593255 |
| concepts[4].level | 2 |
| concepts[4].score | 0.10139462351799011 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q901663 |
| concepts[4].display_name | Molecular dynamics |
| concepts[5].id | https://openalex.org/C62520636 |
| concepts[5].level | 1 |
| concepts[5].score | 0.08165985345840454 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[5].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/interatomic-potential |
| keywords[0].score | 0.48069292306900024 |
| keywords[0].display_name | Interatomic potential |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.3912542164325714 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/psychology |
| keywords[2].score | 0.3631551265716553 |
| keywords[2].display_name | Psychology |
| keywords[3].id | https://openalex.org/keywords/physics |
| keywords[3].score | 0.2749420404434204 |
| keywords[3].display_name | Physics |
| keywords[4].id | https://openalex.org/keywords/molecular-dynamics |
| keywords[4].score | 0.10139462351799011 |
| keywords[4].display_name | Molecular dynamics |
| keywords[5].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[5].score | 0.08165985345840454 |
| keywords[5].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2248548/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2248548/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2248548/v1 |
| locations[1].id | pmh:oai:www.repository.cam.ac.uk:1810/354363 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401776 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Apollo (University of Cambridge) |
| locations[1].source.host_organization | https://openalex.org/I241749 |
| locations[1].source.host_organization_name | University of Cambridge |
| locations[1].source.host_organization_lineage | https://openalex.org/I241749 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.repository.cam.ac.uk/handle/1810/354363 |
| locations[2].id | doi:10.17863/cam.100205 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S7407050737 |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Apollo |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.17863/cam.100205 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5045277172 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1845-0387 |
| authorships[0].author.display_name | Cas van der Oord |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Cambridge, Cambridge, CB2 1PZ, U.K. |
| authorships[0].institutions[0].id | https://openalex.org/I241749 |
| authorships[0].institutions[0].ror | https://ror.org/013meh722 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Cambridge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cas van der Oord |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Cambridge, Cambridge, CB2 1PZ, U.K. |
| authorships[1].author.id | https://openalex.org/A5078929063 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9003-337X |
| authorships[1].author.display_name | Matthias Sachs |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79619799 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Birmingham, Birmingham, B15 2TT, U.K. |
| authorships[1].institutions[0].id | https://openalex.org/I79619799 |
| authorships[1].institutions[0].ror | https://ror.org/03angcq70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79619799 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Birmingham |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matthias Sachs |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Birmingham, Birmingham, B15 2TT, U.K. |
| authorships[2].author.id | https://openalex.org/A5081074372 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9890-8089 |
| authorships[2].author.display_name | David Kovacs |
| authorships[2].countries | CA, GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Cambridge |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I141945490 |
| authorships[2].affiliations[1].raw_affiliation_string | University of British Columbia |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I79619799 |
| authorships[2].affiliations[2].raw_affiliation_string | Unversity of Birmingham |
| authorships[2].institutions[0].id | https://openalex.org/I141945490 |
| authorships[2].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of British Columbia |
| authorships[2].institutions[1].id | https://openalex.org/I79619799 |
| authorships[2].institutions[1].ror | https://ror.org/03angcq70 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I79619799 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | University of Birmingham |
| authorships[2].institutions[2].id | https://openalex.org/I241749 |
| authorships[2].institutions[2].ror | https://ror.org/013meh722 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I241749 |
| authorships[2].institutions[2].country_code | GB |
| authorships[2].institutions[2].display_name | University of Cambridge |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | David Kovacs |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of British Columbia, University of Cambridge, Unversity of Birmingham |
| authorships[3].author.id | https://openalex.org/A5061841111 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1498-8120 |
| authorships[3].author.display_name | Christoph Ortner |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[3].affiliations[0].raw_affiliation_string | University of British Columbia, Vancouver, BC, V6T 1Z2, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I141945490 |
| authorships[3].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of British Columbia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Christoph Ortner |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of British Columbia, Vancouver, BC, V6T 1Z2, Canada |
| authorships[4].author.id | https://openalex.org/A5025442671 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8180-2034 |
| authorships[4].author.display_name | Gábor Cśanyi |
| authorships[4].countries | CA, GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Cambridge |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I79619799 |
| authorships[4].affiliations[1].raw_affiliation_string | Unversity of Birmingham |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I141945490 |
| authorships[4].affiliations[2].raw_affiliation_string | University of British Columbia |
| authorships[4].institutions[0].id | https://openalex.org/I141945490 |
| authorships[4].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of British Columbia |
| authorships[4].institutions[1].id | https://openalex.org/I79619799 |
| authorships[4].institutions[1].ror | https://ror.org/03angcq70 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I79619799 |
| authorships[4].institutions[1].country_code | GB |
| authorships[4].institutions[1].display_name | University of Birmingham |
| authorships[4].institutions[2].id | https://openalex.org/I241749 |
| authorships[4].institutions[2].ror | https://ror.org/013meh722 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I241749 |
| authorships[4].institutions[2].country_code | GB |
| authorships[4].institutions[2].display_name | University of Cambridge |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Gabor Csanyi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of British Columbia, University of Cambridge, Unversity of Birmingham |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2248548/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hyperactive learning for data-driven interatomic potentials |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 8 |
| locations_count | 3 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2248548/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2248548/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2248548/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2248548/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2248548/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2248548/v1 |
| publication_date | 2022-11-18 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2971894235, https://openalex.org/W3189164715, https://openalex.org/W3132956480, https://openalex.org/W26088913, https://openalex.org/W3042629843, https://openalex.org/W2792521034, https://openalex.org/W3119697748, https://openalex.org/W3210084966, https://openalex.org/W2025444507, https://openalex.org/W3034390843, https://openalex.org/W2541404351, https://openalex.org/W2951941231, https://openalex.org/W2620687153, https://openalex.org/W3003486042, https://openalex.org/W1964882117, https://openalex.org/W2979318855, https://openalex.org/W3094536971, https://openalex.org/W2083415705, https://openalex.org/W2197007850, https://openalex.org/W3044111935, https://openalex.org/W3186311783, https://openalex.org/W2527189750, https://openalex.org/W2948990653, https://openalex.org/W2923693308, https://openalex.org/W3171467807, https://openalex.org/W4225405705, https://openalex.org/W2585152223, https://openalex.org/W2726670313, https://openalex.org/W3037345525, https://openalex.org/W2800301423, https://openalex.org/W3096619549, https://openalex.org/W2749006386, https://openalex.org/W2809779474, https://openalex.org/W4294316513, https://openalex.org/W2803167060, https://openalex.org/W2782639338, https://openalex.org/W4281960103, https://openalex.org/W4225565597, https://openalex.org/W3150113257, https://openalex.org/W2041694664, https://openalex.org/W1987290003, https://openalex.org/W1967482190, https://openalex.org/W2014574246, https://openalex.org/W2078629389, https://openalex.org/W2095705004, https://openalex.org/W2916190903, https://openalex.org/W2159752439, https://openalex.org/W2108207895, https://openalex.org/W1777132571, https://openalex.org/W2230132442, https://openalex.org/W2068427465, https://openalex.org/W3034310241, https://openalex.org/W2000798385, https://openalex.org/W3201073812, https://openalex.org/W3033994814, https://openalex.org/W7048738093, https://openalex.org/W2793031072, https://openalex.org/W4237462218, https://openalex.org/W2775708988, https://openalex.org/W3102033477, https://openalex.org/W3103820571, https://openalex.org/W3194649466, https://openalex.org/W4283693526, https://openalex.org/W3116563477, https://openalex.org/W3084211373, https://openalex.org/W2149655632, https://openalex.org/W4287828570, https://openalex.org/W4255975151, https://openalex.org/W3176386153, https://openalex.org/W3189923327, https://openalex.org/W3045322909, https://openalex.org/W2952694699, https://openalex.org/W2910857709, https://openalex.org/W4300537282, https://openalex.org/W2962949869, https://openalex.org/W2904141086, https://openalex.org/W2963339823, https://openalex.org/W4300099583, https://openalex.org/W4287126984, https://openalex.org/W3126679164, https://openalex.org/W4283021369, https://openalex.org/W3012140320, https://openalex.org/W4255455335, https://openalex.org/W2099201756, https://openalex.org/W3012230641 |
| referenced_works_count | 85 |
| abstract_inverted_index.2 | 216 |
| abstract_inverted_index.a | 7, 66, 89, 98, 146, 177, 190 |
| abstract_inverted_index.88 | 151 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.ab | 14 |
| abstract_inverted_index.an | 70 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.be | 133 |
| abstract_inverted_index.by | 143, 204 |
| abstract_inverted_index.is | 44, 85, 180 |
| abstract_inverted_index.of | 10, 78, 160, 189, 197 |
| abstract_inverted_index.on | 115 |
| abstract_inverted_index.to | 22, 86, 110, 145, 167, 185, 207, 217 |
| abstract_inverted_index.(32 | 153 |
| abstract_inverted_index.200 | 198 |
| abstract_inverted_index.32. | 218 |
| abstract_inverted_index.ACE | 137 |
| abstract_inverted_index.For | 135, 175 |
| abstract_inverted_index.HAL | 130, 178 |
| abstract_inverted_index.PEG | 210 |
| abstract_inverted_index.The | 82 |
| abstract_inverted_index.add | 97 |
| abstract_inverted_index.and | 33, 39, 96, 108, 126 |
| abstract_inverted_index.are | 20, 141, 165 |
| abstract_inverted_index.for | 13, 68, 75, 120, 124, 139 |
| abstract_inverted_index.key | 83 |
| abstract_inverted_index.the | 36, 46, 76, 103, 129, 169, 187 |
| abstract_inverted_index.ACE, | 183 |
| abstract_inverted_index.able | 21, 184 |
| abstract_inverted_index.fast | 157 |
| abstract_inverted_index.from | 88, 215 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.high | 106 |
| abstract_inverted_index.idea | 84 |
| abstract_inverted_index.long | 191 |
| abstract_inverted_index.most | 37, 41 |
| abstract_inverted_index.only | 205 |
| abstract_inverted_index.set, | 48 |
| abstract_inverted_index.task | 43, 77 |
| abstract_inverted_index.term | 100 |
| abstract_inverted_index.that | 19, 101 |
| abstract_inverted_index.this | 58, 60, 116 |
| abstract_inverted_index.thus | 109 |
| abstract_inverted_index.user | 54 |
| abstract_inverted_index.will | 132 |
| abstract_inverted_index.with | 27, 156, 172, 201, 212 |
| abstract_inverted_index.work | 61 |
| abstract_inverted_index.(PEG) | 194 |
| abstract_inverted_index.These | 163 |
| abstract_inverted_index.atoms | 154 |
| abstract_inverted_index.built | 181 |
| abstract_inverted_index.class | 9 |
| abstract_inverted_index.each) | 155 |
| abstract_inverted_index.sizes | 213 |
| abstract_inverted_index.small | 208 |
| abstract_inverted_index.start | 87 |
| abstract_inverted_index.still | 50 |
| abstract_inverted_index.times | 159 |
| abstract_inverted_index.units | 200 |
| abstract_inverted_index.using | 182 |
| abstract_inverted_index.which | 49 |
| abstract_inverted_index.(HAL), | 65 |
| abstract_inverted_index.(e.g., | 93 |
| abstract_inverted_index.AlSi10 | 140 |
| abstract_inverted_index.alloys | 125 |
| abstract_inverted_index.drives | 102 |
| abstract_inverted_index.energy | 17 |
| abstract_inverted_index.expert | 53 |
| abstract_inverted_index.formed | 196 |
| abstract_inverted_index.glycol | 193 |
| abstract_inverted_index.initio | 15 |
| abstract_inverted_index.input. | 55 |
| abstract_inverted_index.models | 12 |
| abstract_inverted_index.system | 104 |
| abstract_inverted_index.unseen | 111 |
| abstract_inverted_index.<100 | 161 |
| abstract_inverted_index.alloys, | 136 |
| abstract_inverted_index.biasing | 99 |
| abstract_inverted_index.created | 142 |
| abstract_inverted_index.density | 188 |
| abstract_inverted_index.emerged | 5 |
| abstract_inverted_index.fitting | 144, 206 |
| abstract_inverted_index.general | 118 |
| abstract_inverted_index.melting | 170 |
| abstract_inverted_index.minimal | 147 |
| abstract_inverted_index.monomer | 199 |
| abstract_inverted_index.polymer | 195 |
| abstract_inverted_index.predict | 24, 168 |
| abstract_inverted_index.ranging | 214 |
| abstract_inverted_index.sampler | 92 |
| abstract_inverted_index.towards | 105 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Building | 114 |
| abstract_inverted_index.accuracy | 203 |
| abstract_inverted_index.accurate | 32 |
| abstract_inverted_index.arguably | 40 |
| abstract_inverted_index.building | 121 |
| abstract_inverted_index.database | 80, 149, 179 |
| abstract_inverted_index.isolated | 209 |
| abstract_inverted_index.learning | 64 |
| abstract_inverted_index.polymers | 127, 211 |
| abstract_inverted_index.powerful | 8 |
| abstract_inverted_index.presents | 62 |
| abstract_inverted_index.process, | 59 |
| abstract_inverted_index.reliably | 23 |
| abstract_inverted_index.requires | 51 |
| abstract_inverted_index.sampling | 72 |
| abstract_inverted_index.surfaces | 18 |
| abstract_inverted_index.training | 47, 79, 112, 122 |
| abstract_inverted_index.accuracy. | 29, 174 |
| abstract_inverted_index.algorithm | 73 |
| abstract_inverted_index.databases | 123 |
| abstract_inverted_index.determine | 186 |
| abstract_inverted_index.dynamics) | 95 |
| abstract_inverted_index.excellent | 173 |
| abstract_inverted_index.framework | 67, 131 |
| abstract_inverted_index.important | 42 |
| abstract_inverted_index.molecular | 94 |
| abstract_inverted_index.motivated | 91 |
| abstract_inverted_index.polymers, | 176 |
| abstract_inverted_index.potential | 16 |
| abstract_inverted_index.protocols | 119 |
| abstract_inverted_index.surrogate | 11 |
| abstract_inverted_index.accelerate | 57 |
| abstract_inverted_index.containing | 150 |
| abstract_inverted_index.evaluation | 158 |
| abstract_inverted_index.framework, | 117 |
| abstract_inverted_index.generating | 31, 45 |
| abstract_inverted_index.leveraging | 128 |
| abstract_inverted_index.physically | 90 |
| abstract_inverted_index.potentials | 3, 35, 138, 164 |
| abstract_inverted_index.presented. | 134 |
| abstract_inverted_index.properties | 26 |
| abstract_inverted_index.Data-driven | 1 |
| abstract_inverted_index.accelerated | 71 |
| abstract_inverted_index.formulating | 69 |
| abstract_inverted_index.generation. | 81 |
| abstract_inverted_index.hyperactive | 63 |
| abstract_inverted_index.interatomic | 2 |
| abstract_inverted_index.macroscopic | 25 |
| abstract_inverted_index.significant | 52 |
| abstract_inverted_index.temperature | 171 |
| abstract_inverted_index.uncertainty | 107 |
| abstract_inverted_index.demonstrated | 166 |
| abstract_inverted_index.experimental | 28, 202 |
| abstract_inverted_index.polyethylene | 192 |
| abstract_inverted_index.specifically | 74 |
| abstract_inverted_index.transferable | 34 |
| abstract_inverted_index.HAL-generated | 148 |
| abstract_inverted_index.configurations | 152 |
| abstract_inverted_index.time-consuming | 38 |
| abstract_inverted_index.configurations. | 113 |
| abstract_inverted_index.μs/atom/cpu-core. | 162 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.70174147 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |