Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection Article Swipe
Francisco M. Castro-Macías
,
Pablo Morales-Álvarez
,
Yunan Wu
,
Rafael Molina
,
Aggelos K. Katsaggelos
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.artint.2024.104115
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.artint.2024.104115
Related Topics
Concepts
Probabilistic logic
Representation (politics)
Gaussian
Computer science
Artificial intelligence
Logistic function
Function (biology)
Posterior probability
Mathematics
Applied mathematics
Machine learning
Mathematical optimization
Bayesian probability
Evolutionary biology
Quantum mechanics
Law
Physics
Politics
Political science
Biology
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.artint.2024.104115
- OA Status
- hybrid
- Cited By
- 3
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392860069
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392860069Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.artint.2024.104115Digital Object Identifier
- Title
-
Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-15Full publication date if available
- Authors
-
Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. KatsaggelosList of authors in order
- Landing page
-
https://doi.org/10.1016/j.artint.2024.104115Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.artint.2024.104115Direct OA link when available
- Concepts
-
Probabilistic logic, Representation (politics), Gaussian, Computer science, Artificial intelligence, Logistic function, Function (biology), Posterior probability, Mathematics, Applied mathematics, Machine learning, Mathematical optimization, Bayesian probability, Evolutionary biology, Quantum mechanics, Law, Physics, Politics, Political science, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392860069 |
|---|---|
| doi | https://doi.org/10.1016/j.artint.2024.104115 |
| ids.doi | https://doi.org/10.1016/j.artint.2024.104115 |
| ids.openalex | https://openalex.org/W4392860069 |
| fwci | 1.91633565 |
| type | article |
| title | Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection |
| biblio.issue | |
| biblio.volume | 331 |
| biblio.last_page | 104115 |
| biblio.first_page | 104115 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9911999702453613 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.982200026512146 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| funders[0].id | https://openalex.org/F4320315062 |
| funders[0].ror | |
| funders[0].display_name | Ministerio de Ciencia, Innovación y Universidades |
| is_xpac | False |
| apc_list.value | 3670 |
| apc_list.currency | USD |
| apc_list.value_usd | 3670 |
| apc_paid.value | 3670 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3670 |
| concepts[0].id | https://openalex.org/C49937458 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6366384029388428 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[0].display_name | Probabilistic logic |
| concepts[1].id | https://openalex.org/C2776359362 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6202335357666016 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[1].display_name | Representation (politics) |
| concepts[2].id | https://openalex.org/C163716315 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5751742124557495 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[2].display_name | Gaussian |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4908459782600403 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48343050479888916 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C180802074 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4688962996006012 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1052379 |
| concepts[5].display_name | Logistic function |
| concepts[6].id | https://openalex.org/C14036430 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45666390657424927 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[6].display_name | Function (biology) |
| concepts[7].id | https://openalex.org/C57830394 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45321717858314514 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[7].display_name | Posterior probability |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.40684956312179565 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4003314673900604 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3797384202480316 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3369588851928711 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C107673813 |
| concepts[12].level | 2 |
| concepts[12].score | 0.10151916742324829 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[12].display_name | Bayesian probability |
| concepts[13].id | https://openalex.org/C78458016 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[13].display_name | Evolutionary biology |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C199539241 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[15].display_name | Law |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C94625758 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[17].display_name | Politics |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[0].score | 0.6366384029388428 |
| keywords[0].display_name | Probabilistic logic |
| keywords[1].id | https://openalex.org/keywords/representation |
| keywords[1].score | 0.6202335357666016 |
| keywords[1].display_name | Representation (politics) |
| keywords[2].id | https://openalex.org/keywords/gaussian |
| keywords[2].score | 0.5751742124557495 |
| keywords[2].display_name | Gaussian |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4908459782600403 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.48343050479888916 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/logistic-function |
| keywords[5].score | 0.4688962996006012 |
| keywords[5].display_name | Logistic function |
| keywords[6].id | https://openalex.org/keywords/function |
| keywords[6].score | 0.45666390657424927 |
| keywords[6].display_name | Function (biology) |
| keywords[7].id | https://openalex.org/keywords/posterior-probability |
| keywords[7].score | 0.45321717858314514 |
| keywords[7].display_name | Posterior probability |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.40684956312179565 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.4003314673900604 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3797384202480316 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.3369588851928711 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/bayesian-probability |
| keywords[12].score | 0.10151916742324829 |
| keywords[12].display_name | Bayesian probability |
| language | en |
| locations[0].id | doi:10.1016/j.artint.2024.104115 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196139623 |
| locations[0].source.issn | 0004-3702, 1872-7921 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0004-3702 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1016/j.artint.2024.104115 |
| locations[1].id | pmh:oai:arXiv.org:2403.14829 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2403.14829 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2403.14829 |
| locations[2].id | pmh:oai:digibug.ugr.es:10481/92918 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400567 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Institutional Repository of the University of Granada (University of Granada) |
| locations[2].source.host_organization | https://openalex.org/I173304897 |
| locations[2].source.host_organization_name | Universidad de Granada |
| locations[2].source.host_organization_lineage | https://openalex.org/I173304897 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://hdl.handle.net/10481/92918 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5092503857 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9040-3641 |
| authorships[0].author.display_name | Francisco M. Castro-Macías |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173304897 |
| authorships[0].affiliations[0].raw_affiliation_string | Research Centre for Information and Communication Technologies, University of Granada, Spain |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I173304897 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Computer Science and Artificial Intelligence, University of Granada, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I173304897 |
| authorships[0].institutions[0].ror | https://ror.org/04njjy449 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I173304897 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad de Granada |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Francisco M. Castro-Macías |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Artificial Intelligence, University of Granada, Spain, Research Centre for Information and Communication Technologies, University of Granada, Spain |
| authorships[1].author.id | https://openalex.org/A5006029857 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2793-0083 |
| authorships[1].author.display_name | Pablo Morales-Álvarez |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I173304897 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics and Operations Research, University of Granada, Spain |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I173304897 |
| authorships[1].affiliations[1].raw_affiliation_string | Research Centre for Information and Communication Technologies, University of Granada, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I173304897 |
| authorships[1].institutions[0].ror | https://ror.org/04njjy449 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I173304897 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universidad de Granada |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pablo Morales-Álvarez |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics and Operations Research, University of Granada, Spain, Research Centre for Information and Communication Technologies, University of Granada, Spain |
| authorships[2].author.id | https://openalex.org/A5011949038 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6980-9746 |
| authorships[2].author.display_name | Yunan Wu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I111979921 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Computer Engineering, Northwestern University, USA |
| authorships[2].institutions[0].id | https://openalex.org/I111979921 |
| authorships[2].institutions[0].ror | https://ror.org/000e0be47 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I111979921 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Northwestern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yunan Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Computer Engineering, Northwestern University, USA |
| authorships[3].author.id | https://openalex.org/A5023830568 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4694-8588 |
| authorships[3].author.display_name | Rafael Molina |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I173304897 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Artificial Intelligence, University of Granada, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I173304897 |
| authorships[3].institutions[0].ror | https://ror.org/04njjy449 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I173304897 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Universidad de Granada |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rafael Molina |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Artificial Intelligence, University of Granada, Spain |
| authorships[4].author.id | https://openalex.org/A5048650003 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4554-0070 |
| authorships[4].author.display_name | Aggelos K. Katsaggelos |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I111979921 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Computational Imaging & Signal Analytics in Medicine, Northwestern University, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I111979921 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Electrical Computer Engineering, Northwestern University, USA |
| authorships[4].institutions[0].id | https://openalex.org/I111979921 |
| authorships[4].institutions[0].ror | https://ror.org/000e0be47 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I111979921 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Northwestern University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Aggelos K. Katsaggelos |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Computational Imaging & Signal Analytics in Medicine, Northwestern University, USA, Department of Electrical Computer Engineering, Northwestern University, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.artint.2024.104115 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2171482902, https://openalex.org/W2943623134, https://openalex.org/W2494523064, https://openalex.org/W2215759665, https://openalex.org/W2030292806, https://openalex.org/W2960358116, https://openalex.org/W4287727129, https://openalex.org/W3041172967, https://openalex.org/W2749065928, https://openalex.org/W2147155098 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.artint.2024.104115 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196139623 |
| best_oa_location.source.issn | 0004-3702, 1872-7921 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0004-3702 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.artint.2024.104115 |
| primary_location.id | doi:10.1016/j.artint.2024.104115 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196139623 |
| primary_location.source.issn | 0004-3702, 1872-7921 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0004-3702 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1016/j.artint.2024.104115 |
| publication_date | 2024-03-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2560886373, https://openalex.org/W2110119381, https://openalex.org/W2571156573, https://openalex.org/W2589564332, https://openalex.org/W6736213632, https://openalex.org/W2896817483, https://openalex.org/W2911997543, https://openalex.org/W6769083268, https://openalex.org/W6770153357, https://openalex.org/W3198859228, https://openalex.org/W6747701563, https://openalex.org/W6608379137, https://openalex.org/W6737994387, https://openalex.org/W2747170135, https://openalex.org/W6797691132, https://openalex.org/W6794169340, https://openalex.org/W4220679473, https://openalex.org/W2979879093, https://openalex.org/W6748598817, https://openalex.org/W2099878672, https://openalex.org/W2048801221, https://openalex.org/W3087464462, https://openalex.org/W6674989108, https://openalex.org/W1496451467, https://openalex.org/W6636335772, https://openalex.org/W6774372915, https://openalex.org/W6638563174, https://openalex.org/W6605566567, https://openalex.org/W2992005611, https://openalex.org/W6684944596, https://openalex.org/W6765826203, https://openalex.org/W6729760243, https://openalex.org/W2007339694, https://openalex.org/W6749491804, https://openalex.org/W6749407380, https://openalex.org/W2885688423, https://openalex.org/W2795774310, https://openalex.org/W3025870037, https://openalex.org/W6776470446, https://openalex.org/W2099768828, https://openalex.org/W3013377280, https://openalex.org/W1723619723, https://openalex.org/W4253856448, https://openalex.org/W231930959, https://openalex.org/W2596164567, https://openalex.org/W3011356883, https://openalex.org/W2191637929, https://openalex.org/W3092882822, https://openalex.org/W4236965008, https://openalex.org/W2792253967, https://openalex.org/W2950924736, https://openalex.org/W4211049957, https://openalex.org/W4288310870, https://openalex.org/W4294029521 |
| referenced_works_count | 54 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5092503857 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I173304897 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.82890824 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |