Hypermodels for Exploration Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2006.07464
We study the use of hypermodels to represent epistemic uncertainty and guide exploration. This generalizes and extends the use of ensembles to approximate Thompson sampling. The computational cost of training an ensemble grows with its size, and as such, prior work has typically been limited to ensembles with tens of elements. We show that alternative hypermodels can enjoy dramatic efficiency gains, enabling behavior that would otherwise require hundreds or thousands of elements, and even succeed in situations where ensemble methods fail to learn regardless of size. This allows more accurate approximation of Thompson sampling as well as use of more sophisticated exploration schemes. In particular, we consider an approximate form of information-directed sampling and demonstrate performance gains relative to Thompson sampling. As alternatives to ensembles, we consider linear and neural network hypermodels, also known as hypernetworks. We prove that, with neural network base models, a linear hypermodel can represent essentially any distribution over functions, and as such, hypernetworks are no more expressive.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://arxiv.org/abs/2006.07464
- https://arxiv.org/pdf/2006.07464
- OA Status
- green
- Cited By
- 10
- References
- 15
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2996558820
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2996558820Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2006.07464Digital Object Identifier
- Title
-
Hypermodels for ExplorationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-12Full publication date if available
- Authors
-
Vikranth Dwaracherla, Xiuyuan Lu, Morteza Ibrahimi, Ian Osband, Zheng Wen, Benjamin Van RoyList of authors in order
- Landing page
-
https://arxiv.org/abs/2006.07464Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2006.07464Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.07464Direct OA link when available
- Concepts
-
Computer science, Sampling (signal processing), Artificial neural network, Machine learning, Artificial intelligence, Theoretical computer science, Filter (signal processing), Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 6, 2020: 4Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2996558820 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2006.07464 |
| ids.doi | https://doi.org/10.48550/arxiv.2006.07464 |
| ids.mag | 2996558820 |
| ids.openalex | https://openalex.org/W2996558820 |
| fwci | |
| type | article |
| title | Hypermodels for Exploration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9908000230789185 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T12026 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.989799976348877 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Explainable Artificial Intelligence (XAI) |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6900606155395508 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C140779682 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6841018199920654 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[1].display_name | Sampling (signal processing) |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5413032174110413 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5199414491653442 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49857616424560547 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3520703911781311 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C106131492 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[6].display_name | Filter (signal processing) |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6900606155395508 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sampling |
| keywords[1].score | 0.6841018199920654 |
| keywords[1].display_name | Sampling (signal processing) |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5413032174110413 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5199414491653442 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.49857616424560547 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.3520703911781311 |
| keywords[5].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2006.07464 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2006.07464 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2006.07464 |
| locations[1].id | doi:10.48550/arxiv.2006.07464 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2006.07464 |
| locations[2].id | mag:2996558820 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306419637 |
| locations[2].source.issn | |
| locations[2].source.type | conference |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | International Conference on Learning Representations |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | International Conference on Learning Representations |
| locations[2].landing_page_url | https://www.openreview.net/pdf?id=ryx6WgStPB |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5085692306 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vikranth Dwaracherla |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[0].affiliations[0].raw_affiliation_string | Stanford University, Stanford, United States |
| authorships[0].institutions[0].id | https://openalex.org/I97018004 |
| authorships[0].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stanford University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vikranth Dwaracherla |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Stanford University, Stanford, United States |
| authorships[1].author.id | https://openalex.org/A5027358754 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6376-8584 |
| authorships[1].author.display_name | Xiuyuan Lu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | Stanford University, Stanford, United States |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiuyuan Lu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Stanford University, Stanford, United States |
| authorships[2].author.id | https://openalex.org/A5027959626 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Morteza Ibrahimi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[2].affiliations[0].raw_affiliation_string | Google (United States), Mountain View, United States |
| authorships[2].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[2].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Google (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Morteza Ibrahimi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Google (United States), Mountain View, United States |
| authorships[3].author.id | https://openalex.org/A5015899120 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ian Osband |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[3].affiliations[0].raw_affiliation_string | Google (United States), Mountain View, United States |
| authorships[3].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[3].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Google (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ian Osband |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Google (United States), Mountain View, United States |
| authorships[4].author.id | https://openalex.org/A5067555437 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6987-6463 |
| authorships[4].author.display_name | Zheng Wen |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[4].affiliations[0].raw_affiliation_string | Google (United States), Mountain View, United States |
| authorships[4].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[4].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Google (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zheng Wen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Google (United States), Mountain View, United States |
| authorships[5].author.id | https://openalex.org/A5045543562 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8364-3746 |
| authorships[5].author.display_name | Benjamin Van Roy |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[5].affiliations[0].raw_affiliation_string | Stanford University, Stanford, United States |
| authorships[5].institutions[0].id | https://openalex.org/I97018004 |
| authorships[5].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Stanford University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Benjamin Van Roy |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Stanford University, Stanford, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.07464 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hypermodels for Exploration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W3035622854, https://openalex.org/W2974778612, https://openalex.org/W2963938771, https://openalex.org/W2039522160, https://openalex.org/W2890211540, https://openalex.org/W2186636944, https://openalex.org/W2926417365, https://openalex.org/W2807588596, https://openalex.org/W3157726923, https://openalex.org/W2953161186, https://openalex.org/W2509372577, https://openalex.org/W3099902156, https://openalex.org/W3105432754, https://openalex.org/W637379431, https://openalex.org/W2884368321, https://openalex.org/W1616330627, https://openalex.org/W3204581629, https://openalex.org/W3011584947, https://openalex.org/W2787477569, https://openalex.org/W2182011477 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.07464 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.07464 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.07464 |
| primary_location.id | pmh:oai:arXiv.org:2006.07464 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2006.07464 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2006.07464 |
| publication_date | 2020-06-12 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2951266961, https://openalex.org/W2135194391, https://openalex.org/W2963007936, https://openalex.org/W2767630563, https://openalex.org/W2962723954, https://openalex.org/W2039522160, https://openalex.org/W2765733960, https://openalex.org/W2894356164, https://openalex.org/W2753355075, https://openalex.org/W2963097630, https://openalex.org/W2767449908, https://openalex.org/W1995945562, https://openalex.org/W2963751259, https://openalex.org/W2964059111, https://openalex.org/W2963938771 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 144 |
| abstract_inverted_index.As | 121 |
| abstract_inverted_index.In | 103 |
| abstract_inverted_index.We | 0, 51, 136 |
| abstract_inverted_index.an | 30, 107 |
| abstract_inverted_index.as | 37, 94, 96, 134, 155 |
| abstract_inverted_index.in | 75 |
| abstract_inverted_index.no | 159 |
| abstract_inverted_index.of | 4, 19, 28, 49, 70, 84, 91, 98, 110 |
| abstract_inverted_index.or | 68 |
| abstract_inverted_index.to | 6, 21, 45, 81, 118, 123 |
| abstract_inverted_index.we | 105, 125 |
| abstract_inverted_index.The | 25 |
| abstract_inverted_index.and | 10, 15, 36, 72, 113, 128, 154 |
| abstract_inverted_index.any | 150 |
| abstract_inverted_index.are | 158 |
| abstract_inverted_index.can | 56, 147 |
| abstract_inverted_index.has | 41 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.the | 2, 17 |
| abstract_inverted_index.use | 3, 18, 97 |
| abstract_inverted_index.This | 13, 86 |
| abstract_inverted_index.also | 132 |
| abstract_inverted_index.base | 142 |
| abstract_inverted_index.been | 43 |
| abstract_inverted_index.cost | 27 |
| abstract_inverted_index.even | 73 |
| abstract_inverted_index.fail | 80 |
| abstract_inverted_index.form | 109 |
| abstract_inverted_index.more | 88, 99, 160 |
| abstract_inverted_index.over | 152 |
| abstract_inverted_index.show | 52 |
| abstract_inverted_index.tens | 48 |
| abstract_inverted_index.that | 53, 63 |
| abstract_inverted_index.well | 95 |
| abstract_inverted_index.with | 33, 47, 139 |
| abstract_inverted_index.work | 40 |
| abstract_inverted_index.enjoy | 57 |
| abstract_inverted_index.gains | 116 |
| abstract_inverted_index.grows | 32 |
| abstract_inverted_index.guide | 11 |
| abstract_inverted_index.known | 133 |
| abstract_inverted_index.learn | 82 |
| abstract_inverted_index.prior | 39 |
| abstract_inverted_index.prove | 137 |
| abstract_inverted_index.size, | 35 |
| abstract_inverted_index.size. | 85 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.such, | 38, 156 |
| abstract_inverted_index.that, | 138 |
| abstract_inverted_index.where | 77 |
| abstract_inverted_index.would | 64 |
| abstract_inverted_index.allows | 87 |
| abstract_inverted_index.gains, | 60 |
| abstract_inverted_index.linear | 127, 145 |
| abstract_inverted_index.neural | 129, 140 |
| abstract_inverted_index.extends | 16 |
| abstract_inverted_index.limited | 44 |
| abstract_inverted_index.methods | 79 |
| abstract_inverted_index.models, | 143 |
| abstract_inverted_index.network | 130, 141 |
| abstract_inverted_index.require | 66 |
| abstract_inverted_index.succeed | 74 |
| abstract_inverted_index.Thompson | 23, 92, 119 |
| abstract_inverted_index.accurate | 89 |
| abstract_inverted_index.behavior | 62 |
| abstract_inverted_index.consider | 106, 126 |
| abstract_inverted_index.dramatic | 58 |
| abstract_inverted_index.enabling | 61 |
| abstract_inverted_index.ensemble | 31, 78 |
| abstract_inverted_index.hundreds | 67 |
| abstract_inverted_index.relative | 117 |
| abstract_inverted_index.sampling | 93, 112 |
| abstract_inverted_index.schemes. | 102 |
| abstract_inverted_index.training | 29 |
| abstract_inverted_index.elements, | 71 |
| abstract_inverted_index.elements. | 50 |
| abstract_inverted_index.ensembles | 20, 46 |
| abstract_inverted_index.epistemic | 8 |
| abstract_inverted_index.otherwise | 65 |
| abstract_inverted_index.represent | 7, 148 |
| abstract_inverted_index.sampling. | 24, 120 |
| abstract_inverted_index.thousands | 69 |
| abstract_inverted_index.typically | 42 |
| abstract_inverted_index.efficiency | 59 |
| abstract_inverted_index.ensembles, | 124 |
| abstract_inverted_index.functions, | 153 |
| abstract_inverted_index.hypermodel | 146 |
| abstract_inverted_index.regardless | 83 |
| abstract_inverted_index.situations | 76 |
| abstract_inverted_index.alternative | 54 |
| abstract_inverted_index.approximate | 22, 108 |
| abstract_inverted_index.demonstrate | 114 |
| abstract_inverted_index.essentially | 149 |
| abstract_inverted_index.exploration | 101 |
| abstract_inverted_index.expressive. | 161 |
| abstract_inverted_index.generalizes | 14 |
| abstract_inverted_index.hypermodels | 5, 55 |
| abstract_inverted_index.particular, | 104 |
| abstract_inverted_index.performance | 115 |
| abstract_inverted_index.uncertainty | 9 |
| abstract_inverted_index.alternatives | 122 |
| abstract_inverted_index.distribution | 151 |
| abstract_inverted_index.exploration. | 12 |
| abstract_inverted_index.hypermodels, | 131 |
| abstract_inverted_index.approximation | 90 |
| abstract_inverted_index.computational | 26 |
| abstract_inverted_index.hypernetworks | 157 |
| abstract_inverted_index.sophisticated | 100 |
| abstract_inverted_index.hypernetworks. | 135 |
| abstract_inverted_index.information-directed | 111 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |