Hyperparameter Optimization for Tomato Leaf Disease Recognition Based on YOLOv11m Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/plants14050653
The automated recognition of disease in tomato leaves can greatly enhance yield and allow farmers to manage challenges more efficiently. This study investigates the performance of YOLOv11 for tomato leaf disease recognition. All accessible versions of YOLOv11 were first fine-tuned on an improved tomato leaf disease dataset consisting of a healthy class and 10 disease classes. YOLOv11m was selected for further hyperparameter optimization based on its evaluation metrics. It achieved a fitness score of 0.98885, with a precision of 0.99104, a recall of 0.98597, and a [email protected] of 0.99197. This model underwent rigorous hyperparameter optimization using the one-factor-at-a-time (OFAT) algorithm, with a focus on essential parameters such as batch size, learning rate, optimizer, weight decay, momentum, dropout, and epochs. Subsequently, random search (RS) with 100 configurations was performed based on the results of OFAT. Among them, the C47 model demonstrated a fitness score of 0.99268 (a 0.39% improvement), with a precision of 0.99190 (0.09%), a recall of 0.99348 (0.76%), and a [email protected] of 0.99262 (0.07%). The results suggest that the final model works efficiently and is capable of accurately detecting and identifying tomato leaf diseases, making it suitable for practical farming applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/plants14050653
- OA Status
- gold
- Cited By
- 15
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407812969
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407812969Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/plants14050653Digital Object Identifier
- Title
-
Hyperparameter Optimization for Tomato Leaf Disease Recognition Based on YOLOv11mWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-21Full publication date if available
- Authors
-
Yong-Suk Lee, Maheshkumar Prakash Patil, Jeong Gyu Kim, Yong Bae Seo, Dong-Hyun Ahn, Gun‐Do KimList of authors in order
- Landing page
-
https://doi.org/10.3390/plants14050653Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/plants14050653Direct OA link when available
- Concepts
-
Hyperparameter, Dropout (neural networks), Random forest, Recall, Artificial intelligence, Hyperparameter optimization, Machine learning, Precision and recall, Computer science, Pattern recognition (psychology), Statistics, Mathematics, Support vector machine, Psychology, Cognitive psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407812969 |
|---|---|
| doi | https://doi.org/10.3390/plants14050653 |
| ids.doi | https://doi.org/10.3390/plants14050653 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40094534 |
| ids.openalex | https://openalex.org/W4407812969 |
| fwci | 66.81482929 |
| type | article |
| title | Hyperparameter Optimization for Tomato Leaf Disease Recognition Based on YOLOv11m |
| awards[0].id | https://openalex.org/G8348629237 |
| awards[0].funder_id | https://openalex.org/F4320322120 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021R1I1A1A01051968 |
| awards[0].funder_display_name | National Research Foundation of Korea |
| biblio.issue | 5 |
| biblio.volume | 14 |
| biblio.last_page | 653 |
| biblio.first_page | 653 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T10494 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9254000186920166 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Plant Virus Research Studies |
| topics[2].id | https://openalex.org/T14365 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.923799991607666 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Leaf Properties and Growth Measurement |
| funders[0].id | https://openalex.org/F4320322120 |
| funders[0].ror | https://ror.org/013aysd81 |
| funders[0].display_name | National Research Foundation of Korea |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C8642999 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9090701341629028 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[0].display_name | Hyperparameter |
| concepts[1].id | https://openalex.org/C2776145597 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7691411972045898 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25339462 |
| concepts[1].display_name | Dropout (neural networks) |
| concepts[2].id | https://openalex.org/C169258074 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5473662614822388 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[2].display_name | Random forest |
| concepts[3].id | https://openalex.org/C100660578 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5232685804367065 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q18733 |
| concepts[3].display_name | Recall |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5132991671562195 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C10485038 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5048061609268188 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q48996162 |
| concepts[5].display_name | Hyperparameter optimization |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5001389980316162 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C81669768 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4717232584953308 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2359161 |
| concepts[7].display_name | Precision and recall |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.41536566615104675 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3789597153663635 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3781895041465759 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.37349528074264526 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C12267149 |
| concepts[12].level | 2 |
| concepts[12].score | 0.12787222862243652 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[12].display_name | Support vector machine |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0871601402759552 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C180747234 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[14].display_name | Cognitive psychology |
| keywords[0].id | https://openalex.org/keywords/hyperparameter |
| keywords[0].score | 0.9090701341629028 |
| keywords[0].display_name | Hyperparameter |
| keywords[1].id | https://openalex.org/keywords/dropout |
| keywords[1].score | 0.7691411972045898 |
| keywords[1].display_name | Dropout (neural networks) |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.5473662614822388 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/recall |
| keywords[3].score | 0.5232685804367065 |
| keywords[3].display_name | Recall |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5132991671562195 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/hyperparameter-optimization |
| keywords[5].score | 0.5048061609268188 |
| keywords[5].display_name | Hyperparameter optimization |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5001389980316162 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/precision-and-recall |
| keywords[7].score | 0.4717232584953308 |
| keywords[7].display_name | Precision and recall |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.41536566615104675 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.3789597153663635 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.3781895041465759 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.37349528074264526 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/support-vector-machine |
| keywords[12].score | 0.12787222862243652 |
| keywords[12].display_name | Support vector machine |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.0871601402759552 |
| keywords[13].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.3390/plants14050653 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210230202 |
| locations[0].source.issn | 2223-7747 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2223-7747 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Plants |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Plants |
| locations[0].landing_page_url | https://doi.org/10.3390/plants14050653 |
| locations[1].id | pmid:40094534 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Plants (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40094534 |
| locations[2].id | pmh:oai:doaj.org/article:da95b8a16e2643c8a5bcea22ba641793 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Plants, Vol 14, Iss 5, p 653 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/da95b8a16e2643c8a5bcea22ba641793 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11901684 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Plants (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11901684 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5048852083 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0152-4095 |
| authorships[0].author.display_name | Yong-Suk Lee |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I8991828 |
| authorships[0].affiliations[0].raw_affiliation_string | Industry University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I8991828 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I8991828 |
| authorships[0].institutions[0].ror | https://ror.org/0433kqc49 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I8991828 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Pukyong National University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yong-Suk Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea, Industry University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5061278154 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5303-5985 |
| authorships[1].author.display_name | Maheshkumar Prakash Patil |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I8991828 |
| authorships[1].affiliations[0].raw_affiliation_string | Industry University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I8991828 |
| authorships[1].institutions[0].ror | https://ror.org/0433kqc49 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I8991828 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Pukyong National University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maheshkumar Prakash Patil |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Industry University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5114101281 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jeong Gyu Kim |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I8991828 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I8991828 |
| authorships[2].institutions[0].ror | https://ror.org/0433kqc49 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I8991828 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Pukyong National University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jeong Gyu Kim |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5034532207 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1526-9403 |
| authorships[3].author.display_name | Yong Bae Seo |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I8991828 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I8991828 |
| authorships[3].institutions[0].ror | https://ror.org/0433kqc49 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I8991828 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Pukyong National University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yong Bae Seo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5110299942 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Dong-Hyun Ahn |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I8991828 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I8991828 |
| authorships[4].institutions[0].ror | https://ror.org/0433kqc49 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I8991828 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Pukyong National University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dong-Hyun Ahn |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5069548951 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5965-0495 |
| authorships[5].author.display_name | Gun‐Do Kim |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I8991828 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea |
| authorships[5].institutions[0].id | https://openalex.org/I8991828 |
| authorships[5].institutions[0].ror | https://ror.org/0433kqc49 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I8991828 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Pukyong National University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Gun-Do Kim |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/plants14050653 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hyperparameter Optimization for Tomato Leaf Disease Recognition Based on YOLOv11m |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2953665647, https://openalex.org/W4281646320, https://openalex.org/W4205712847, https://openalex.org/W3169687406, https://openalex.org/W1974336862, https://openalex.org/W4388119537, https://openalex.org/W3014750173, https://openalex.org/W3114025147, https://openalex.org/W4386295066, https://openalex.org/W4396679425 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/plants14050653 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210230202 |
| best_oa_location.source.issn | 2223-7747 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2223-7747 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Plants |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Plants |
| best_oa_location.landing_page_url | https://doi.org/10.3390/plants14050653 |
| primary_location.id | doi:10.3390/plants14050653 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210230202 |
| primary_location.source.issn | 2223-7747 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2223-7747 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Plants |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Plants |
| primary_location.landing_page_url | https://doi.org/10.3390/plants14050653 |
| publication_date | 2025-02-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4380870128, https://openalex.org/W3209845747, https://openalex.org/W3096351688, https://openalex.org/W6687104755, https://openalex.org/W2493582082, https://openalex.org/W6855778585, https://openalex.org/W2099689505, https://openalex.org/W3176446102, https://openalex.org/W4328115538, https://openalex.org/W4384929674, https://openalex.org/W4212965978, https://openalex.org/W4313529952, https://openalex.org/W3136389514, https://openalex.org/W4390743321, https://openalex.org/W2789255992, https://openalex.org/W4281694288, https://openalex.org/W2613718673, https://openalex.org/W2963037989, https://openalex.org/W3035016091, https://openalex.org/W4317717473, https://openalex.org/W3180134609, https://openalex.org/W3128322927, https://openalex.org/W3215216361, https://openalex.org/W4321014256, https://openalex.org/W4394617142, https://openalex.org/W4327620340, https://openalex.org/W4324094220, https://openalex.org/W4390974593, https://openalex.org/W4398978139, https://openalex.org/W4399289632, https://openalex.org/W2182361439, https://openalex.org/W3179950556, https://openalex.org/W2113207845, https://openalex.org/W3191950921, https://openalex.org/W3045004532, https://openalex.org/W6674385629, https://openalex.org/W6868975612, https://openalex.org/W4391707459, https://openalex.org/W4401992617, https://openalex.org/W4403550531, https://openalex.org/W3021970402, https://openalex.org/W2170832294, https://openalex.org/W2123845751, https://openalex.org/W6747672186, https://openalex.org/W2970490659, https://openalex.org/W2791441828, https://openalex.org/W6681151457, https://openalex.org/W1980287119, https://openalex.org/W104184427, https://openalex.org/W6757107679, https://openalex.org/W6674330103, https://openalex.org/W2599192953, https://openalex.org/W6696879442, https://openalex.org/W3176283180, https://openalex.org/W4389618682, https://openalex.org/W4403604335, https://openalex.org/W4402571992, https://openalex.org/W4293661539, https://openalex.org/W6747381837, https://openalex.org/W3211439159, https://openalex.org/W2969534524, https://openalex.org/W6773732629, https://openalex.org/W2944542720, https://openalex.org/W2964054038, https://openalex.org/W4399244718, https://openalex.org/W4385652611, https://openalex.org/W2187864716, https://openalex.org/W2095705004, https://openalex.org/W2782970864, https://openalex.org/W2097998348 |
| referenced_works_count | 70 |
| abstract_inverted_index.a | 49, 70, 76, 80, 85, 101, 140, 149, 154, 160 |
| abstract_inverted_index.(a | 145 |
| abstract_inverted_index.10 | 53 |
| abstract_inverted_index.It | 68 |
| abstract_inverted_index.an | 41 |
| abstract_inverted_index.as | 107 |
| abstract_inverted_index.in | 5 |
| abstract_inverted_index.is | 175 |
| abstract_inverted_index.it | 186 |
| abstract_inverted_index.of | 3, 25, 35, 48, 73, 78, 82, 87, 132, 143, 151, 156, 162, 177 |
| abstract_inverted_index.on | 40, 64, 103, 129 |
| abstract_inverted_index.to | 15 |
| abstract_inverted_index.100 | 124 |
| abstract_inverted_index.All | 32 |
| abstract_inverted_index.C47 | 137 |
| abstract_inverted_index.The | 0, 165 |
| abstract_inverted_index.and | 12, 52, 84, 117, 159, 174, 180 |
| abstract_inverted_index.can | 8 |
| abstract_inverted_index.for | 27, 59, 188 |
| abstract_inverted_index.its | 65 |
| abstract_inverted_index.the | 23, 96, 130, 136, 169 |
| abstract_inverted_index.was | 57, 126 |
| abstract_inverted_index.(RS) | 122 |
| abstract_inverted_index.This | 20, 89 |
| abstract_inverted_index.leaf | 29, 44, 183 |
| abstract_inverted_index.more | 18 |
| abstract_inverted_index.such | 106 |
| abstract_inverted_index.that | 168 |
| abstract_inverted_index.were | 37 |
| abstract_inverted_index.with | 75, 100, 123, 148 |
| abstract_inverted_index.0.39% | 146 |
| abstract_inverted_index.Among | 134 |
| abstract_inverted_index.OFAT. | 133 |
| abstract_inverted_index.allow | 13 |
| abstract_inverted_index.based | 63, 128 |
| abstract_inverted_index.batch | 108 |
| abstract_inverted_index.class | 51 |
| abstract_inverted_index.final | 170 |
| abstract_inverted_index.first | 38 |
| abstract_inverted_index.focus | 102 |
| abstract_inverted_index.model | 90, 138, 171 |
| abstract_inverted_index.rate, | 111 |
| abstract_inverted_index.score | 72, 142 |
| abstract_inverted_index.size, | 109 |
| abstract_inverted_index.study | 21 |
| abstract_inverted_index.them, | 135 |
| abstract_inverted_index.using | 95 |
| abstract_inverted_index.works | 172 |
| abstract_inverted_index.yield | 11 |
| abstract_inverted_index.(OFAT) | 98 |
| abstract_inverted_index.decay, | 114 |
| abstract_inverted_index.leaves | 7 |
| [email protected] | 86, 161 |
| abstract_inverted_index.making | 185 |
| abstract_inverted_index.manage | 16 |
| abstract_inverted_index.random | 120 |
| abstract_inverted_index.recall | 81, 155 |
| abstract_inverted_index.search | 121 |
| abstract_inverted_index.tomato | 6, 28, 43, 182 |
| abstract_inverted_index.weight | 113 |
| abstract_inverted_index.0.99190 | 152 |
| abstract_inverted_index.0.99262 | 163 |
| abstract_inverted_index.0.99268 | 144 |
| abstract_inverted_index.0.99348 | 157 |
| abstract_inverted_index.YOLOv11 | 26, 36 |
| abstract_inverted_index.capable | 176 |
| abstract_inverted_index.dataset | 46 |
| abstract_inverted_index.disease | 4, 30, 45, 54 |
| abstract_inverted_index.enhance | 10 |
| abstract_inverted_index.epochs. | 118 |
| abstract_inverted_index.farmers | 14 |
| abstract_inverted_index.farming | 190 |
| abstract_inverted_index.fitness | 71, 141 |
| abstract_inverted_index.further | 60 |
| abstract_inverted_index.greatly | 9 |
| abstract_inverted_index.healthy | 50 |
| abstract_inverted_index.results | 131, 166 |
| abstract_inverted_index.suggest | 167 |
| abstract_inverted_index.(0.07%). | 164 |
| abstract_inverted_index.(0.09%), | 153 |
| abstract_inverted_index.(0.76%), | 158 |
| abstract_inverted_index.0.98597, | 83 |
| abstract_inverted_index.0.98885, | 74 |
| abstract_inverted_index.0.99104, | 79 |
| abstract_inverted_index.0.99197. | 88 |
| abstract_inverted_index.YOLOv11m | 56 |
| abstract_inverted_index.achieved | 69 |
| abstract_inverted_index.classes. | 55 |
| abstract_inverted_index.dropout, | 116 |
| abstract_inverted_index.improved | 42 |
| abstract_inverted_index.learning | 110 |
| abstract_inverted_index.metrics. | 67 |
| abstract_inverted_index.rigorous | 92 |
| abstract_inverted_index.selected | 58 |
| abstract_inverted_index.suitable | 187 |
| abstract_inverted_index.versions | 34 |
| abstract_inverted_index.automated | 1 |
| abstract_inverted_index.detecting | 179 |
| abstract_inverted_index.diseases, | 184 |
| abstract_inverted_index.essential | 104 |
| abstract_inverted_index.momentum, | 115 |
| abstract_inverted_index.performed | 127 |
| abstract_inverted_index.practical | 189 |
| abstract_inverted_index.precision | 77, 150 |
| abstract_inverted_index.underwent | 91 |
| abstract_inverted_index.accessible | 33 |
| abstract_inverted_index.accurately | 178 |
| abstract_inverted_index.algorithm, | 99 |
| abstract_inverted_index.challenges | 17 |
| abstract_inverted_index.consisting | 47 |
| abstract_inverted_index.evaluation | 66 |
| abstract_inverted_index.fine-tuned | 39 |
| abstract_inverted_index.optimizer, | 112 |
| abstract_inverted_index.parameters | 105 |
| abstract_inverted_index.efficiently | 173 |
| abstract_inverted_index.identifying | 181 |
| abstract_inverted_index.performance | 24 |
| abstract_inverted_index.recognition | 2 |
| abstract_inverted_index.demonstrated | 139 |
| abstract_inverted_index.efficiently. | 19 |
| abstract_inverted_index.investigates | 22 |
| abstract_inverted_index.optimization | 62, 94 |
| abstract_inverted_index.recognition. | 31 |
| abstract_inverted_index.Subsequently, | 119 |
| abstract_inverted_index.applications. | 191 |
| abstract_inverted_index.improvement), | 147 |
| abstract_inverted_index.configurations | 125 |
| abstract_inverted_index.hyperparameter | 61, 93 |
| abstract_inverted_index.one-factor-at-a-time | 97 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5110299942, https://openalex.org/A5069548951 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I8991828 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.99867508 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |