HyperPhS: a pharmacophore-guided multimodal representation framework for metabolic stability prediction through contrastive hypergraph learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/bioinformatics/btaf524
Motivation Metabolic stability is crucial in the early stage of drug discovery and development. Drug candidate screening and optimization can be streamlined through the accurate prediction of stability. Functional groups within drug molecules are known as pharmacophores, which bind directly to receptors or biological macromolecules to produce biological effects, thereby affecting metabolic stability. Therefore, determining metabolic stability via the pharmacophore groups remains a significant challenge. Results To address these issues, we propose a Pharmacophore-guided Hypergraph representation framework for predicting metabolic Stability (HyperPhS). In this study, we introduce a hypergraph-based method to extract features from metabolic pharmacophores with multi-view representation and contrastive learning. In particular, we introduce a pharmacophore-based contrastive learning encoder that captures the consistency between functional and nonfunctional structures. Our method applies ChatGPT simultaneously to metabolites and heterogeneous encoders and integrates multimodal representations by using attention-driven fusion modules coupled with fully connected neural networks. On the HLM dataset, HyperPhS achieves outstanding performance with 87.6% in AUC and 62.6% in MCC, alongside an external test AUC of 88.3%. In addition, pharmacophore groups studied by HyperPhS are validated for their interpretability through case studies. Overall, HyperPhS is an effective and interpretable tool for determining metabolic stability, identifying critical functional groups, and optimizing compounds. Availability and implementation The code and data are available at https://github.com/xiaoyiliu-usc/HyperPhS.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bioinformatics/btaf524
- OA Status
- gold
- References
- 25
- OpenAlex ID
- https://openalex.org/W4414422024
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414422024Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bioinformatics/btaf524Digital Object Identifier
- Title
-
HyperPhS: a pharmacophore-guided multimodal representation framework for metabolic stability prediction through contrastive hypergraph learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-19Full publication date if available
- Authors
-
Xiaoyi Liu, Na Zhang, Charles A. Kang, Hongpeng Yang, Chengwei Ai, Jijun Tang, Fei GuoList of authors in order
- Landing page
-
https://doi.org/10.1093/bioinformatics/btaf524Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/bioinformatics/btaf524Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414422024 |
|---|---|
| doi | https://doi.org/10.1093/bioinformatics/btaf524 |
| ids.doi | https://doi.org/10.1093/bioinformatics/btaf524 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40981510 |
| ids.openalex | https://openalex.org/W4414422024 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D055808 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Drug Discovery |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D019295 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Computational Biology |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000092165 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Pharmacophore |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D055808 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Drug Discovery |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016571 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Neural Networks, Computer |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000465 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Algorithms |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D019295 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Computational Biology |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000092165 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Pharmacophore |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D055808 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Drug Discovery |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000069550 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Machine Learning |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016571 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Neural Networks, Computer |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000465 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Algorithms |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D019295 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Computational Biology |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D006801 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Humans |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000092165 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Pharmacophore |
| type | article |
| title | HyperPhS: a pharmacophore-guided multimodal representation framework for metabolic stability prediction through contrastive hypergraph learning |
| biblio.issue | 10 |
| biblio.volume | 41 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10836 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.974399983882904 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Metabolomics and Mass Spectrometry Studies |
| topics[2].id | https://openalex.org/T12254 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9534000158309937 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Machine Learning in Bioinformatics |
| is_xpac | False |
| apc_list.value | 3618 |
| apc_list.currency | USD |
| apc_list.value_usd | 3618 |
| apc_paid.value | 3618 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3618 |
| language | en |
| locations[0].id | doi:10.1093/bioinformatics/btaf524 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52395412 |
| locations[0].source.issn | 1367-4803, 1367-4811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1367-4803 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bioinformatics/btaf524 |
| locations[1].id | pmid:40981510 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioinformatics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40981510 |
| locations[2].id | pmh:oai:europepmc.org:11383842 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12574321 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5112110529 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-6395-5318 |
| authorships[0].author.display_name | Xiaoyi Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I17747738 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China |
| authorships[0].institutions[0].id | https://openalex.org/I17747738 |
| authorships[0].institutions[0].ror | https://ror.org/05damtm70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I17747738 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Chinese Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoyi Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China |
| authorships[1].author.id | https://openalex.org/A5100385276 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9050-3327 |
| authorships[1].author.display_name | Na Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer Science and Engineering, Central South University, Changsha, 410083, China |
| authorships[1].institutions[0].id | https://openalex.org/I139660479 |
| authorships[1].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Central South University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Na Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer Science and Engineering, Central South University, Changsha, 410083, China |
| authorships[2].author.id | https://openalex.org/A5057326855 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2948-4710 |
| authorships[2].author.display_name | Charles A. Kang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[2].affiliations[0].raw_affiliation_string | Computer Science and Engineering, Central South University, Changsha, 410083, China |
| authorships[2].institutions[0].id | https://openalex.org/I139660479 |
| authorships[2].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Central South University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chenglong Kang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computer Science and Engineering, Central South University, Changsha, 410083, China |
| authorships[3].author.id | https://openalex.org/A5081832999 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hongpeng Yang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer Science and Engineering, University of South Carolina, Columbia, 29208, United States |
| authorships[3].institutions[0].id | https://openalex.org/I155781252 |
| authorships[3].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of South Carolina |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hongpeng Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer Science and Engineering, University of South Carolina, Columbia, 29208, United States |
| authorships[4].author.id | https://openalex.org/A5018156666 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1314-660X |
| authorships[4].author.display_name | Chengwei Ai |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[4].affiliations[0].raw_affiliation_string | Computer Science and Engineering, Central South University, Changsha, 410083, China |
| authorships[4].institutions[0].id | https://openalex.org/I139660479 |
| authorships[4].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Central South University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chengwei Ai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Computer Science and Engineering, Central South University, Changsha, 410083, China |
| authorships[5].author.id | https://openalex.org/A5001619694 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6377-536X |
| authorships[5].author.display_name | Jijun Tang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[5].affiliations[0].raw_affiliation_string | Computer Science and Engineering, Shenzhen University of Advanced Technology, Nanshan, 518055, China |
| authorships[5].institutions[0].id | https://openalex.org/I180726961 |
| authorships[5].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shenzhen University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jijun Tang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Computer Science and Engineering, Shenzhen University of Advanced Technology, Nanshan, 518055, China |
| authorships[6].author.id | https://openalex.org/A5100702161 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8346-0798 |
| authorships[6].author.display_name | Fei Guo |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[6].affiliations[0].raw_affiliation_string | Computer Science and Engineering, Central South University, Changsha, 410083, China |
| authorships[6].institutions[0].id | https://openalex.org/I139660479 |
| authorships[6].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Central South University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Fei Guo |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Computer Science and Engineering, Central South University, Changsha, 410083, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/bioinformatics/btaf524 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HyperPhS: a pharmacophore-guided multimodal representation framework for metabolic stability prediction through contrastive hypergraph learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bioinformatics/btaf524 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52395412 |
| best_oa_location.source.issn | 1367-4803, 1367-4811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1367-4803 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btaf524 |
| primary_location.id | doi:10.1093/bioinformatics/btaf524 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52395412 |
| primary_location.source.issn | 1367-4803, 1367-4811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1367-4803 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btaf524 |
| publication_date | 2025-09-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4280602833, https://openalex.org/W4385774226, https://openalex.org/W2200017991, https://openalex.org/W2892880750, https://openalex.org/W3195569805, https://openalex.org/W1994179575, https://openalex.org/W3047011765, https://openalex.org/W4362520745, https://openalex.org/W4306353220, https://openalex.org/W4294286981, https://openalex.org/W4388423852, https://openalex.org/W4402947492, https://openalex.org/W4375954910, https://openalex.org/W2179414561, https://openalex.org/W3199720447, https://openalex.org/W3022708367, https://openalex.org/W3199903253, https://openalex.org/W2954500169, https://openalex.org/W2221103459, https://openalex.org/W2860192827, https://openalex.org/W4394749617, https://openalex.org/W1975147762, https://openalex.org/W4313800388, https://openalex.org/W2968734407, https://openalex.org/W4387401786 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 63, 73, 88, 107 |
| abstract_inverted_index.In | 83, 103, 169 |
| abstract_inverted_index.On | 146 |
| abstract_inverted_index.To | 67 |
| abstract_inverted_index.an | 163, 187 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.at | 212 |
| abstract_inverted_index.be | 21 |
| abstract_inverted_index.by | 135, 174 |
| abstract_inverted_index.in | 6, 156, 160 |
| abstract_inverted_index.is | 4, 186 |
| abstract_inverted_index.of | 10, 27, 167 |
| abstract_inverted_index.or | 43 |
| abstract_inverted_index.to | 41, 46, 91, 126 |
| abstract_inverted_index.we | 71, 86, 105 |
| abstract_inverted_index.AUC | 157, 166 |
| abstract_inverted_index.HLM | 148 |
| abstract_inverted_index.Our | 121 |
| abstract_inverted_index.The | 206 |
| abstract_inverted_index.and | 13, 18, 100, 118, 128, 131, 158, 189, 200, 204, 208 |
| abstract_inverted_index.are | 34, 176, 210 |
| abstract_inverted_index.can | 20 |
| abstract_inverted_index.for | 78, 178, 192 |
| abstract_inverted_index.the | 7, 24, 59, 114, 147 |
| abstract_inverted_index.via | 58 |
| abstract_inverted_index.Drug | 15 |
| abstract_inverted_index.MCC, | 161 |
| abstract_inverted_index.bind | 39 |
| abstract_inverted_index.case | 182 |
| abstract_inverted_index.code | 207 |
| abstract_inverted_index.data | 209 |
| abstract_inverted_index.drug | 11, 32 |
| abstract_inverted_index.from | 94 |
| abstract_inverted_index.test | 165 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.tool | 191 |
| abstract_inverted_index.with | 97, 141, 154 |
| abstract_inverted_index.62.6% | 159 |
| abstract_inverted_index.87.6% | 155 |
| abstract_inverted_index.early | 8 |
| abstract_inverted_index.fully | 142 |
| abstract_inverted_index.known | 35 |
| abstract_inverted_index.stage | 9 |
| abstract_inverted_index.their | 179 |
| abstract_inverted_index.these | 69 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.88.3%. | 168 |
| abstract_inverted_index.fusion | 138 |
| abstract_inverted_index.groups | 30, 61, 172 |
| abstract_inverted_index.method | 90, 122 |
| abstract_inverted_index.neural | 144 |
| abstract_inverted_index.study, | 85 |
| abstract_inverted_index.within | 31 |
| abstract_inverted_index.ChatGPT | 124 |
| abstract_inverted_index.Results | 66 |
| abstract_inverted_index.address | 68 |
| abstract_inverted_index.applies | 123 |
| abstract_inverted_index.between | 116 |
| abstract_inverted_index.coupled | 140 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.encoder | 111 |
| abstract_inverted_index.extract | 92 |
| abstract_inverted_index.groups, | 199 |
| abstract_inverted_index.issues, | 70 |
| abstract_inverted_index.modules | 139 |
| abstract_inverted_index.produce | 47 |
| abstract_inverted_index.propose | 72 |
| abstract_inverted_index.remains | 62 |
| abstract_inverted_index.studied | 173 |
| abstract_inverted_index.thereby | 50 |
| abstract_inverted_index.through | 23, 181 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.HyperPhS | 150, 175, 185 |
| abstract_inverted_index.Overall, | 184 |
| abstract_inverted_index.accurate | 25 |
| abstract_inverted_index.achieves | 151 |
| abstract_inverted_index.captures | 113 |
| abstract_inverted_index.critical | 197 |
| abstract_inverted_index.dataset, | 149 |
| abstract_inverted_index.directly | 40 |
| abstract_inverted_index.effects, | 49 |
| abstract_inverted_index.encoders | 130 |
| abstract_inverted_index.external | 164 |
| abstract_inverted_index.features | 93 |
| abstract_inverted_index.learning | 110 |
| abstract_inverted_index.studies. | 183 |
| abstract_inverted_index.Metabolic | 2 |
| abstract_inverted_index.Stability | 81 |
| abstract_inverted_index.addition, | 170 |
| abstract_inverted_index.affecting | 51 |
| abstract_inverted_index.alongside | 162 |
| abstract_inverted_index.available | 211 |
| abstract_inverted_index.candidate | 16 |
| abstract_inverted_index.connected | 143 |
| abstract_inverted_index.discovery | 12 |
| abstract_inverted_index.effective | 188 |
| abstract_inverted_index.framework | 77 |
| abstract_inverted_index.introduce | 87, 106 |
| abstract_inverted_index.learning. | 102 |
| abstract_inverted_index.metabolic | 52, 56, 80, 95, 194 |
| abstract_inverted_index.molecules | 33 |
| abstract_inverted_index.networks. | 145 |
| abstract_inverted_index.receptors | 42 |
| abstract_inverted_index.screening | 17 |
| abstract_inverted_index.stability | 3, 57 |
| abstract_inverted_index.validated | 177 |
| abstract_inverted_index.Functional | 29 |
| abstract_inverted_index.Hypergraph | 75 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.Therefore, | 54 |
| abstract_inverted_index.biological | 44, 48 |
| abstract_inverted_index.challenge. | 65 |
| abstract_inverted_index.compounds. | 202 |
| abstract_inverted_index.functional | 117, 198 |
| abstract_inverted_index.integrates | 132 |
| abstract_inverted_index.multi-view | 98 |
| abstract_inverted_index.multimodal | 133 |
| abstract_inverted_index.optimizing | 201 |
| abstract_inverted_index.predicting | 79 |
| abstract_inverted_index.prediction | 26 |
| abstract_inverted_index.stability, | 195 |
| abstract_inverted_index.stability. | 28, 53 |
| abstract_inverted_index.(HyperPhS). | 82 |
| abstract_inverted_index.consistency | 115 |
| abstract_inverted_index.contrastive | 101, 109 |
| abstract_inverted_index.determining | 55, 193 |
| abstract_inverted_index.identifying | 196 |
| abstract_inverted_index.metabolites | 127 |
| abstract_inverted_index.outstanding | 152 |
| abstract_inverted_index.particular, | 104 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.significant | 64 |
| abstract_inverted_index.streamlined | 22 |
| abstract_inverted_index.structures. | 120 |
| abstract_inverted_index.Availability | 203 |
| abstract_inverted_index.development. | 14 |
| abstract_inverted_index.optimization | 19 |
| abstract_inverted_index.heterogeneous | 129 |
| abstract_inverted_index.interpretable | 190 |
| abstract_inverted_index.nonfunctional | 119 |
| abstract_inverted_index.pharmacophore | 60, 171 |
| abstract_inverted_index.implementation | 205 |
| abstract_inverted_index.macromolecules | 45 |
| abstract_inverted_index.pharmacophores | 96 |
| abstract_inverted_index.representation | 76, 99 |
| abstract_inverted_index.simultaneously | 125 |
| abstract_inverted_index.pharmacophores, | 37 |
| abstract_inverted_index.representations | 134 |
| abstract_inverted_index.attention-driven | 137 |
| abstract_inverted_index.hypergraph-based | 89 |
| abstract_inverted_index.interpretability | 180 |
| abstract_inverted_index.pharmacophore-based | 108 |
| abstract_inverted_index.Pharmacophore-guided | 74 |
| abstract_inverted_index.https://github.com/xiaoyiliu-usc/HyperPhS. | 213 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.4281356 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |