Hyperspectral and LiDAR Data Fusion Classification Using Superpixel Segmentation-Based Local Pixel Neighborhood Preserving Embedding Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.3390/rs11050550
A new method of superpixel segmentation-based local pixel neighborhood preserving embedding (SSLPNPE) is proposed for the fusion of hyperspectral and light detection and ranging (LiDAR) data based on the extinction profiles (EPs), superpixel segmentation and local pixel neighborhood preserving embedding (LPNPE). A new workflow is proposed to calibrate the Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) data, which allows our method to be applied to actual data. Specifically, EP features are extracted from both sources. Then, the derived features of each source are fused by the SSLPNPE. Using the labeled samples, the final label assignment is produced by a classifier. For the open standard experimental data and the actual data, experimental results prove that the proposed method is fast and effective in hyperspectral and LiDAR data fusion.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs11050550
- https://www.mdpi.com/2072-4292/11/5/550/pdf?version=1552357443
- OA Status
- gold
- Cited By
- 16
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2922136661
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2922136661Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs11050550Digital Object Identifier
- Title
-
Hyperspectral and LiDAR Data Fusion Classification Using Superpixel Segmentation-Based Local Pixel Neighborhood Preserving EmbeddingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-06Full publication date if available
- Authors
-
Yunsong Li, Chiru Ge, Weiwei Sun, Jiangtao Peng, Qian Du, Keyan WangList of authors in order
- Landing page
-
https://doi.org/10.3390/rs11050550Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/11/5/550/pdf?version=1552357443Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/11/5/550/pdf?version=1552357443Direct OA link when available
- Concepts
-
Lidar, Hyperspectral imaging, Artificial intelligence, Pixel, Segmentation, Computer science, Ranging, Embedding, Fusion, Pattern recognition (psychology), Remote sensing, Sensor fusion, Computer vision, Geography, Linguistics, Philosophy, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 1, 2022: 2, 2021: 4, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2922136661 |
|---|---|
| doi | https://doi.org/10.3390/rs11050550 |
| ids.doi | https://doi.org/10.3390/rs11050550 |
| ids.mag | 2922136661 |
| ids.openalex | https://openalex.org/W2922136661 |
| fwci | 1.70833652 |
| type | article |
| title | Hyperspectral and LiDAR Data Fusion Classification Using Superpixel Segmentation-Based Local Pixel Neighborhood Preserving Embedding |
| awards[0].id | https://openalex.org/G4556824653 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61801357 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4131587450 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61571345 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G4507359911 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61502367 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G5745640903 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61871177 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G5657849150 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 91538101 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G841248577 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 61501346 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| awards[6].id | https://openalex.org/G1424917938 |
| awards[6].funder_id | https://openalex.org/F4320321001 |
| awards[6].display_name | |
| awards[6].funder_award_id | 61701360 |
| awards[6].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 5 |
| biblio.volume | 11 |
| biblio.last_page | 550 |
| biblio.first_page | 550 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T12389 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Infrared Target Detection Methodologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8202601671218872 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C159078339 |
| concepts[1].level | 2 |
| concepts[1].score | 0.804627537727356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[1].display_name | Hyperspectral imaging |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6330685019493103 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C160633673 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6257539391517639 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[3].display_name | Pixel |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6021780967712402 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5833857655525208 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C115051666 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5713618993759155 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6522493 |
| concepts[6].display_name | Ranging |
| concepts[7].id | https://openalex.org/C41608201 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5509072542190552 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[7].display_name | Embedding |
| concepts[8].id | https://openalex.org/C158525013 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5032040476799011 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[8].display_name | Fusion |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49048754572868347 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.46460360288619995 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C33954974 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4620261788368225 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[11].display_name | Sensor fusion |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.43168386816978455 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1454726755619049 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.8202601671218872 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[1].score | 0.804627537727356 |
| keywords[1].display_name | Hyperspectral imaging |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6330685019493103 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pixel |
| keywords[3].score | 0.6257539391517639 |
| keywords[3].display_name | Pixel |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.6021780967712402 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5833857655525208 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/ranging |
| keywords[6].score | 0.5713618993759155 |
| keywords[6].display_name | Ranging |
| keywords[7].id | https://openalex.org/keywords/embedding |
| keywords[7].score | 0.5509072542190552 |
| keywords[7].display_name | Embedding |
| keywords[8].id | https://openalex.org/keywords/fusion |
| keywords[8].score | 0.5032040476799011 |
| keywords[8].display_name | Fusion |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.49048754572868347 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.46460360288619995 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/sensor-fusion |
| keywords[11].score | 0.4620261788368225 |
| keywords[11].display_name | Sensor fusion |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.43168386816978455 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.1454726755619049 |
| keywords[13].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/rs11050550 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/11/5/550/pdf?version=1552357443 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs11050550 |
| locations[1].id | pmh:oai:doaj.org/article:5dceba731dc54218af98f9cb7fef1219 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 11, Iss 5, p 550 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/5dceba731dc54218af98f9cb7fef1219 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5067798266 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0640-4060 |
| authorships[0].author.display_name | Yunsong Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | The School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[1].raw_affiliation_string | The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yunsong Li |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | The School of Telecommunications Engineering, Xidian University, Xi'an 710071, China, The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China |
| authorships[1].author.id | https://openalex.org/A5078580228 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6562-8040 |
| authorships[1].author.display_name | Chiru Ge |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | The School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[1].raw_affiliation_string | The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chiru Ge |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The School of Telecommunications Engineering, Xidian University, Xi'an 710071, China, The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China |
| authorships[2].author.id | https://openalex.org/A5050009113 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3399-7858 |
| authorships[2].author.display_name | Weiwei Sun |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I109935558 |
| authorships[2].affiliations[0].raw_affiliation_string | The Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China |
| authorships[2].institutions[0].id | https://openalex.org/I109935558 |
| authorships[2].institutions[0].ror | https://ror.org/03et85d35 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I109935558 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ningbo University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Weiwei Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China |
| authorships[3].author.id | https://openalex.org/A5036030486 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4759-0584 |
| authorships[3].author.display_name | Jiangtao Peng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75900474 |
| authorships[3].affiliations[0].raw_affiliation_string | The Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China |
| authorships[3].institutions[0].id | https://openalex.org/I75900474 |
| authorships[3].institutions[0].ror | https://ror.org/03a60m280 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I75900474 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hubei University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiangtao Peng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China |
| authorships[4].author.id | https://openalex.org/A5033017179 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8354-7500 |
| authorships[4].author.display_name | Qian Du |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I99041443 |
| authorships[4].affiliations[0].raw_affiliation_string | The Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA |
| authorships[4].institutions[0].id | https://openalex.org/I99041443 |
| authorships[4].institutions[0].ror | https://ror.org/0432jq872 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I99041443 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Mississippi State University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qian Du |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA |
| authorships[5].author.id | https://openalex.org/A5013877857 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6116-9286 |
| authorships[5].author.display_name | Keyan Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[5].affiliations[0].raw_affiliation_string | The School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I149594827 |
| authorships[5].affiliations[1].raw_affiliation_string | The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China |
| authorships[5].institutions[0].id | https://openalex.org/I149594827 |
| authorships[5].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xidian University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Keyan Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The School of Telecommunications Engineering, Xidian University, Xi'an 710071, China, The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/11/5/550/pdf?version=1552357443 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hyperspectral and LiDAR Data Fusion Classification Using Superpixel Segmentation-Based Local Pixel Neighborhood Preserving Embedding |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2783354812, https://openalex.org/W4384112194, https://openalex.org/W2103009189, https://openalex.org/W4312958259, https://openalex.org/W2594043982, https://openalex.org/W3036493597, https://openalex.org/W2132659060, https://openalex.org/W2031992971, https://openalex.org/W3214791684, https://openalex.org/W2152662039 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs11050550 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/11/5/550/pdf?version=1552357443 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs11050550 |
| primary_location.id | doi:10.3390/rs11050550 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/11/5/550/pdf?version=1552357443 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs11050550 |
| publication_date | 2019-03-06 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1965309615, https://openalex.org/W2616976651, https://openalex.org/W2895280829, https://openalex.org/W2897199189, https://openalex.org/W2892075618, https://openalex.org/W2533102868, https://openalex.org/W2888751777, https://openalex.org/W2771571905, https://openalex.org/W2795686633, https://openalex.org/W2901084634, https://openalex.org/W2772709394, https://openalex.org/W2786856072, https://openalex.org/W2284520540, https://openalex.org/W2304771603, https://openalex.org/W1973653666, https://openalex.org/W2058537106, https://openalex.org/W2052402549, https://openalex.org/W2023634664, https://openalex.org/W2771522049, https://openalex.org/W6754105182, https://openalex.org/W2765739551, https://openalex.org/W2054689043, https://openalex.org/W2605646105, https://openalex.org/W2745081071, https://openalex.org/W2165796970, https://openalex.org/W2744049245, https://openalex.org/W2606929568, https://openalex.org/W2565258258, https://openalex.org/W2127199143, https://openalex.org/W2114819256, https://openalex.org/W2346557146, https://openalex.org/W2519956323, https://openalex.org/W2046649434, https://openalex.org/W2162698522, https://openalex.org/W6676189307, https://openalex.org/W6685372642, https://openalex.org/W2118796925, https://openalex.org/W2131697388, https://openalex.org/W2072187267, https://openalex.org/W2135431554, https://openalex.org/W6754364536, https://openalex.org/W2897819140, https://openalex.org/W1965228281, https://openalex.org/W2140095548, https://openalex.org/W1596717185, https://openalex.org/W2099741732, https://openalex.org/W4292023222, https://openalex.org/W2109531142, https://openalex.org/W2889911412, https://openalex.org/W2888654602, https://openalex.org/W3014771378 |
| referenced_works_count | 51 |
| abstract_inverted_index.A | 0, 41 |
| abstract_inverted_index.a | 97 |
| abstract_inverted_index.EP | 67 |
| abstract_inverted_index.be | 61 |
| abstract_inverted_index.by | 83, 96 |
| abstract_inverted_index.in | 120 |
| abstract_inverted_index.is | 12, 44, 94, 116 |
| abstract_inverted_index.of | 3, 17, 78 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.to | 46, 60, 63 |
| abstract_inverted_index.For | 99 |
| abstract_inverted_index.and | 19, 22, 34, 52, 105, 118, 122 |
| abstract_inverted_index.are | 69, 81 |
| abstract_inverted_index.for | 14 |
| abstract_inverted_index.new | 1, 42 |
| abstract_inverted_index.our | 58 |
| abstract_inverted_index.the | 15, 28, 48, 75, 84, 87, 90, 100, 106, 113 |
| abstract_inverted_index.both | 72 |
| abstract_inverted_index.data | 25, 104, 124 |
| abstract_inverted_index.each | 79 |
| abstract_inverted_index.fast | 117 |
| abstract_inverted_index.from | 71 |
| abstract_inverted_index.open | 101 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.LiDAR | 123 |
| abstract_inverted_index.Then, | 74 |
| abstract_inverted_index.Using | 86 |
| abstract_inverted_index.based | 26 |
| abstract_inverted_index.data, | 55, 108 |
| abstract_inverted_index.data. | 65 |
| abstract_inverted_index.final | 91 |
| abstract_inverted_index.fused | 82 |
| abstract_inverted_index.label | 92 |
| abstract_inverted_index.light | 20 |
| abstract_inverted_index.local | 6, 35 |
| abstract_inverted_index.pixel | 7, 36 |
| abstract_inverted_index.prove | 111 |
| abstract_inverted_index.which | 56 |
| abstract_inverted_index.(EPs), | 31 |
| abstract_inverted_index.LiDAR, | 50 |
| abstract_inverted_index.actual | 64, 107 |
| abstract_inverted_index.allows | 57 |
| abstract_inverted_index.fusion | 16 |
| abstract_inverted_index.method | 2, 59, 115 |
| abstract_inverted_index.source | 80 |
| abstract_inverted_index.(LiDAR) | 24 |
| abstract_inverted_index.applied | 62 |
| abstract_inverted_index.derived | 76 |
| abstract_inverted_index.fusion. | 125 |
| abstract_inverted_index.labeled | 88 |
| abstract_inverted_index.ranging | 23 |
| abstract_inverted_index.results | 110 |
| abstract_inverted_index.thermal | 53 |
| abstract_inverted_index.(G-LiHT) | 54 |
| abstract_inverted_index.(LPNPE). | 40 |
| abstract_inverted_index.SSLPNPE. | 85 |
| abstract_inverted_index.features | 68, 77 |
| abstract_inverted_index.produced | 95 |
| abstract_inverted_index.profiles | 30 |
| abstract_inverted_index.proposed | 13, 45, 114 |
| abstract_inverted_index.samples, | 89 |
| abstract_inverted_index.sources. | 73 |
| abstract_inverted_index.standard | 102 |
| abstract_inverted_index.workflow | 43 |
| abstract_inverted_index.(SSLPNPE) | 11 |
| abstract_inverted_index.calibrate | 47 |
| abstract_inverted_index.detection | 21 |
| abstract_inverted_index.effective | 119 |
| abstract_inverted_index.embedding | 10, 39 |
| abstract_inverted_index.extracted | 70 |
| abstract_inverted_index.assignment | 93 |
| abstract_inverted_index.extinction | 29 |
| abstract_inverted_index.preserving | 9, 38 |
| abstract_inverted_index.superpixel | 4, 32 |
| abstract_inverted_index.Goddard’s | 49 |
| abstract_inverted_index.classifier. | 98 |
| abstract_inverted_index.experimental | 103, 109 |
| abstract_inverted_index.neighborhood | 8, 37 |
| abstract_inverted_index.segmentation | 33 |
| abstract_inverted_index.Specifically, | 66 |
| abstract_inverted_index.hyperspectral | 18, 51, 121 |
| abstract_inverted_index.segmentation-based | 5 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5067798266 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I149594827 |
| citation_normalized_percentile.value | 0.85643172 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |