Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.3390/rs10030396
With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based algorithms have been focused on deep feature extraction for classification improvement. Multi-features, such as texture feature, are widely utilized in classification process to enhance classification accuracy greatly. In this paper, a novel hyperspectral classification framework based on an optimal DBN and a novel texture feature enhancement (TFE) is proposed. Through band grouping, sample band selection and guided filtering, the texture features of hyperspectral data are improved. After TFE, the optimal DBN is employed on the hyperspectral reconstructed data for feature extraction and classification. Experimental results demonstrate that the proposed classification framework outperforms some state-of-the-art classification algorithms, and it can achieve outstanding hyperspectral classification performance. Furthermore, our proposed TFE method can play a significant role in improving classification accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs10030396
- https://www.mdpi.com/2072-4292/10/3/396/pdf?version=1520153634
- OA Status
- gold
- Cited By
- 100
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2789886710
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2789886710Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs10030396Digital Object Identifier
- Title
-
Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-03-04Full publication date if available
- Authors
-
Jiaojiao Li, Bobo Xi, Yunsong Li, Qian Du, Keyan WangList of authors in order
- Landing page
-
https://doi.org/10.3390/rs10030396Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/10/3/396/pdf?version=1520153634Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/10/3/396/pdf?version=1520153634Direct OA link when available
- Concepts
-
Hyperspectral imaging, Artificial intelligence, Pattern recognition (psychology), Computer science, Deep belief network, Feature extraction, Feature selection, Deep learning, Feature (linguistics), Texture (cosmology), Image (mathematics), Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
100Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 11, 2023: 9, 2022: 13, 2021: 19Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2789886710 |
|---|---|
| doi | https://doi.org/10.3390/rs10030396 |
| ids.doi | https://doi.org/10.3390/rs10030396 |
| ids.mag | 2789886710 |
| ids.openalex | https://openalex.org/W2789886710 |
| fwci | 13.45050196 |
| type | article |
| title | Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 396 |
| biblio.first_page | 396 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| topics[2].id | https://openalex.org/T10824 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9811000227928162 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8358644843101501 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.8041457533836365 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7119580507278442 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.682014524936676 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C97385483 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6677629947662354 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[4].display_name | Deep belief network |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5395371913909912 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C148483581 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5049853920936584 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[6].display_name | Feature selection |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4663523733615875 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4517981708049774 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C2781195486 |
| concepts[9].level | 3 |
| concepts[9].score | 0.439309686422348 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q289436 |
| concepts[9].display_name | Texture (cosmology) |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.13233652710914612 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.8358644843101501 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.8041457533836365 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.7119580507278442 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.682014524936676 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/deep-belief-network |
| keywords[4].score | 0.6677629947662354 |
| keywords[4].display_name | Deep belief network |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.5395371913909912 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/feature-selection |
| keywords[6].score | 0.5049853920936584 |
| keywords[6].display_name | Feature selection |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4663523733615875 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.4517981708049774 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/texture |
| keywords[9].score | 0.439309686422348 |
| keywords[9].display_name | Texture (cosmology) |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.13233652710914612 |
| keywords[10].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.3390/rs10030396 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/10/3/396/pdf?version=1520153634 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs10030396 |
| locations[1].id | pmh:oai:doaj.org/article:19e59f42b35b485ebd235bc439fb1619 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 10, Iss 3, p 396 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/19e59f42b35b485ebd235bc439fb1619 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/10/3/396/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 10; Issue 3; Pages: 396 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs10030396 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100734649 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0470-9469 |
| authorships[0].author.display_name | Jiaojiao Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | The State Key Lab. of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiaojiao Li |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | The State Key Lab. of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[1].author.id | https://openalex.org/A5006601447 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0309-1556 |
| authorships[1].author.display_name | Bobo Xi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | The State Key Lab. of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bobo Xi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The State Key Lab. of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[2].author.id | https://openalex.org/A5067798266 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0640-4060 |
| authorships[2].author.display_name | Yunsong Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | The State Key Lab. of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yunsong Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The State Key Lab. of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[3].author.id | https://openalex.org/A5033017179 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8354-7500 |
| authorships[3].author.display_name | Qian Du |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99041443 |
| authorships[3].affiliations[0].raw_affiliation_string | The Department of Electronic and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA |
| authorships[3].institutions[0].id | https://openalex.org/I99041443 |
| authorships[3].institutions[0].ror | https://ror.org/0432jq872 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I99041443 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Mississippi State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qian Du |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Department of Electronic and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA |
| authorships[4].author.id | https://openalex.org/A5013877857 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6116-9286 |
| authorships[4].author.display_name | Keyan Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[4].affiliations[0].raw_affiliation_string | The State Key Lab. of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| authorships[4].institutions[0].id | https://openalex.org/I149594827 |
| authorships[4].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xidian University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Keyan Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The State Key Lab. of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/10/3/396/pdf?version=1520153634 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2018-03-29T00:00:00 |
| display_name | Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2070598848, https://openalex.org/W3034375524, https://openalex.org/W2060875994, https://openalex.org/W2027399350, https://openalex.org/W2044184146, https://openalex.org/W2019190440, https://openalex.org/W2343470940, https://openalex.org/W3034864990 |
| cited_by_count | 100 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 13 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 19 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 24 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 11 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 7 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs10030396 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/10/3/396/pdf?version=1520153634 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs10030396 |
| primary_location.id | doi:10.3390/rs10030396 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/10/3/396/pdf?version=1520153634 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs10030396 |
| publication_date | 2018-03-04 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2765366036, https://openalex.org/W2276858186, https://openalex.org/W6684482425, https://openalex.org/W2746833665, https://openalex.org/W2138950591, https://openalex.org/W1988425434, https://openalex.org/W3155649056, https://openalex.org/W2273614765, https://openalex.org/W2004553299, https://openalex.org/W2143500192, https://openalex.org/W2766654873, https://openalex.org/W2340716013, https://openalex.org/W2771016293, https://openalex.org/W2208523048, https://openalex.org/W2769774644, https://openalex.org/W2154996879, https://openalex.org/W2129812935, https://openalex.org/W2142848040, https://openalex.org/W2097915756, https://openalex.org/W1997565609, https://openalex.org/W2127152713, https://openalex.org/W2166923144, https://openalex.org/W1972524915, https://openalex.org/W2201274797, https://openalex.org/W2751289896, https://openalex.org/W2141379714, https://openalex.org/W2068470708, https://openalex.org/W2148461049, https://openalex.org/W2614256707, https://openalex.org/W2500751094, https://openalex.org/W6673008270, https://openalex.org/W2765452533, https://openalex.org/W2100495367, https://openalex.org/W2056472112, https://openalex.org/W2743091961, https://openalex.org/W2168481151, https://openalex.org/W2167255285, https://openalex.org/W3103753223, https://openalex.org/W2090424610 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 52, 63, 133 |
| abstract_inverted_index.In | 49 |
| abstract_inverted_index.an | 59 |
| abstract_inverted_index.as | 35 |
| abstract_inverted_index.in | 7, 15, 41, 136 |
| abstract_inverted_index.is | 69, 93 |
| abstract_inverted_index.it | 119 |
| abstract_inverted_index.of | 2, 83 |
| abstract_inverted_index.on | 26, 58, 95 |
| abstract_inverted_index.to | 44 |
| abstract_inverted_index.DBN | 10, 61, 92 |
| abstract_inverted_index.TFE | 129 |
| abstract_inverted_index.and | 62, 77, 103, 118 |
| abstract_inverted_index.are | 38, 86 |
| abstract_inverted_index.can | 120, 131 |
| abstract_inverted_index.for | 30, 100 |
| abstract_inverted_index.has | 11 |
| abstract_inverted_index.our | 127 |
| abstract_inverted_index.the | 80, 90, 96, 109 |
| abstract_inverted_index.Deep | 3 |
| abstract_inverted_index.Many | 18 |
| abstract_inverted_index.TFE, | 89 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.band | 72, 75 |
| abstract_inverted_index.been | 24 |
| abstract_inverted_index.data | 85, 99 |
| abstract_inverted_index.deep | 19, 27 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.play | 132 |
| abstract_inverted_index.role | 135 |
| abstract_inverted_index.some | 114 |
| abstract_inverted_index.such | 34 |
| abstract_inverted_index.that | 108 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.(TFE) | 68 |
| abstract_inverted_index.After | 88 |
| abstract_inverted_index.based | 21, 57 |
| abstract_inverted_index.great | 13 |
| abstract_inverted_index.novel | 53, 64 |
| abstract_inverted_index.(DBNs) | 6 |
| abstract_inverted_index.Belief | 4 |
| abstract_inverted_index.guided | 78 |
| abstract_inverted_index.method | 130 |
| abstract_inverted_index.paper, | 51 |
| abstract_inverted_index.sample | 74 |
| abstract_inverted_index.widely | 39 |
| abstract_inverted_index.Through | 71 |
| abstract_inverted_index.achieve | 121 |
| abstract_inverted_index.enhance | 45 |
| abstract_inverted_index.feature | 28, 66, 101 |
| abstract_inverted_index.focused | 25 |
| abstract_inverted_index.optimal | 60, 91 |
| abstract_inverted_index.process | 43 |
| abstract_inverted_index.results | 106 |
| abstract_inverted_index.success | 1 |
| abstract_inverted_index.texture | 36, 65, 81 |
| abstract_inverted_index.vision, | 9 |
| abstract_inverted_index.Networks | 5 |
| abstract_inverted_index.accuracy | 47 |
| abstract_inverted_index.computer | 8 |
| abstract_inverted_index.employed | 94 |
| abstract_inverted_index.feature, | 37 |
| abstract_inverted_index.features | 82 |
| abstract_inverted_index.greatly. | 48 |
| abstract_inverted_index.learning | 20 |
| abstract_inverted_index.proposed | 110, 128 |
| abstract_inverted_index.utilized | 40 |
| abstract_inverted_index.accuracy. | 139 |
| abstract_inverted_index.attention | 14 |
| abstract_inverted_index.attracted | 12 |
| abstract_inverted_index.framework | 56, 112 |
| abstract_inverted_index.grouping, | 73 |
| abstract_inverted_index.improved. | 87 |
| abstract_inverted_index.improving | 137 |
| abstract_inverted_index.proposed. | 70 |
| abstract_inverted_index.selection | 76 |
| abstract_inverted_index.algorithms | 22 |
| abstract_inverted_index.extraction | 29, 102 |
| abstract_inverted_index.filtering, | 79 |
| abstract_inverted_index.algorithms, | 117 |
| abstract_inverted_index.demonstrate | 107 |
| abstract_inverted_index.enhancement | 67 |
| abstract_inverted_index.outperforms | 113 |
| abstract_inverted_index.outstanding | 122 |
| abstract_inverted_index.significant | 134 |
| abstract_inverted_index.Experimental | 105 |
| abstract_inverted_index.Furthermore, | 126 |
| abstract_inverted_index.improvement. | 32 |
| abstract_inverted_index.performance. | 125 |
| abstract_inverted_index.hyperspectral | 16, 54, 84, 97, 123 |
| abstract_inverted_index.reconstructed | 98 |
| abstract_inverted_index.classification | 31, 42, 46, 55, 111, 116, 124, 138 |
| abstract_inverted_index.Multi-features, | 33 |
| abstract_inverted_index.classification. | 17, 104 |
| abstract_inverted_index.state-of-the-art | 115 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5100734649 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I149594827 |
| citation_normalized_percentile.value | 0.98776024 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |