Hyperspectral Ghost Image Residual Correction Method Based on PSF Degradation Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17244006
In hyperspectral images, ghost image residuals exceeding a certain threshold not only reduce the recognition accuracy of the imaging detection system but also decrease the target identification rate. Ghost image residuals affect both the recognition accuracy of the detection system and the accuracy of spectral calibration, thereby influencing qualitative and quantitative inversion. Conventional ghost image residual correction methods can significantly affect both the relative and absolute calibration accuracy of hyperspectral images. To minimize the impact on spectral calibration accuracy during ghost image residual correction, we propose a ghost image degradation model and an iterative optimization algorithm. In the proposed approach, a ghost image residual degradation model is constructed based on the point spread function (PSF) of ghost image residuals and their energy distribution characteristics. Using the proportion of ghost image residuals and the accuracy of hyperspectral image calibration as constraints, we iteratively optimized typical regional target ghost image residuals across different spectral channels, achieving automated correction of ghost image residuals in various spectral bands. The experimental results show that the energy proportion of ghost image residuals at different wavelengths decreased from 4.6% to 0.3%, the variations in spectral curves before and after correction were less than 0.8%, and the change in absolute radiometric calibration accuracy was below 0.06%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17244006
- https://www.mdpi.com/2072-4292/17/24/4006/pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4417241429
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417241429Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17244006Digital Object Identifier
- Title
-
Hyperspectral Ghost Image Residual Correction Method Based on PSF Degradation ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-11Full publication date if available
- Authors
-
Xijie Li, Jiating Yang, Tieqiao Chen, Siyuan Li, Pengchong Wang, Sai Zhong, Ming Gao, Bingliang HuList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17244006Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/17/24/4006/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/17/24/4006/pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417241429 |
|---|---|
| doi | https://doi.org/10.3390/rs17244006 |
| ids.doi | https://doi.org/10.3390/rs17244006 |
| ids.openalex | https://openalex.org/W4417241429 |
| fwci | |
| type | article |
| title | Hyperspectral Ghost Image Residual Correction Method Based on PSF Degradation Model |
| biblio.issue | 24 |
| biblio.volume | 17 |
| biblio.last_page | 4006 |
| biblio.first_page | 4006 |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| language | en |
| locations[0].id | doi:10.3390/rs17244006 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/17/24/4006/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17244006 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5056590791 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1350-5385 |
| authorships[0].author.display_name | Xijie Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Ultrafast Optical Science and Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210144662 |
| authorships[0].affiliations[1].raw_affiliation_string | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210110558 |
| authorships[0].affiliations[2].raw_affiliation_string | School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210144662 |
| authorships[0].institutions[1].ror | https://ror.org/0444j5556 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[0].institutions[2].id | https://openalex.org/I4210110558 |
| authorships[0].institutions[2].ror | https://ror.org/01t8prc81 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I4210110558 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Xi'an Technological University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xijie Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China, Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China, State Key Laboratory of Ultrafast Optical Science and Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[1].author.id | https://openalex.org/A5090317521 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jiating Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210144662 |
| authorships[1].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210144662 |
| authorships[1].institutions[0].ror | https://ror.org/0444j5556 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiating Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[2].author.id | https://openalex.org/A5073616464 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9787-9538 |
| authorships[2].author.display_name | Tieqiao Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210144662 |
| authorships[2].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210144662 |
| authorships[2].institutions[0].ror | https://ror.org/0444j5556 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tieqiao Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[3].author.id | https://openalex.org/A5100406638 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9999-437X |
| authorships[3].author.display_name | Siyuan Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210144662 |
| authorships[3].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210144662 |
| authorships[3].institutions[0].ror | https://ror.org/0444j5556 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Siyuan Li |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[4].author.id | https://openalex.org/A5101435215 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5664-0355 |
| authorships[4].author.display_name | Pengchong Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210144662 |
| authorships[4].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210144662 |
| authorships[4].institutions[0].ror | https://ror.org/0444j5556 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pengchong Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[5].author.id | https://openalex.org/A5026012883 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Sai Zhong |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I177739611 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Informatics and Mathematics, Yangtze University, Jingzhou 434000, China |
| authorships[5].institutions[0].id | https://openalex.org/I177739611 |
| authorships[5].institutions[0].ror | https://ror.org/05bhmhz54 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I177739611 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Yangtze University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sai Zhong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Informatics and Mathematics, Yangtze University, Jingzhou 434000, China |
| authorships[6].author.id | https://openalex.org/A5018693443 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8519-9941 |
| authorships[6].author.display_name | Ming Gao |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210110558 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210110558 |
| authorships[6].institutions[0].ror | https://ror.org/01t8prc81 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210110558 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Xi'an Technological University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ming Gao |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China |
| authorships[7].author.id | https://openalex.org/A5112404957 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Bingliang Hu |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210144662 |
| authorships[7].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210144662 |
| authorships[7].institutions[0].ror | https://ror.org/0444j5556 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Bingliang Hu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Shaanxi Key Laboratory of Optical Remote Sensing and Intelligent Information Processing, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/17/24/4006/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | Hyperspectral Ghost Image Residual Correction Method Based on PSF Degradation Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-12T23:16:27.785689 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/rs17244006 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/17/24/4006/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17244006 |
| primary_location.id | doi:10.3390/rs17244006 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/17/24/4006/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17244006 |
| publication_date | 2025-12-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 86, 100 |
| abstract_inverted_index.In | 0, 96 |
| abstract_inverted_index.To | 71 |
| abstract_inverted_index.an | 92 |
| abstract_inverted_index.as | 138 |
| abstract_inverted_index.at | 176 |
| abstract_inverted_index.in | 160, 186, 200 |
| abstract_inverted_index.is | 106 |
| abstract_inverted_index.of | 16, 36, 43, 68, 115, 127, 134, 156, 172 |
| abstract_inverted_index.on | 75, 109 |
| abstract_inverted_index.to | 182 |
| abstract_inverted_index.we | 84, 140 |
| abstract_inverted_index.The | 164 |
| abstract_inverted_index.and | 40, 49, 64, 91, 119, 131, 190, 197 |
| abstract_inverted_index.but | 21 |
| abstract_inverted_index.can | 58 |
| abstract_inverted_index.not | 10 |
| abstract_inverted_index.the | 13, 17, 24, 33, 37, 41, 62, 73, 97, 110, 125, 132, 169, 184, 198 |
| abstract_inverted_index.was | 205 |
| abstract_inverted_index.4.6% | 181 |
| abstract_inverted_index.also | 22 |
| abstract_inverted_index.both | 32, 61 |
| abstract_inverted_index.from | 180 |
| abstract_inverted_index.less | 194 |
| abstract_inverted_index.only | 11 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.than | 195 |
| abstract_inverted_index.that | 168 |
| abstract_inverted_index.were | 193 |
| abstract_inverted_index.(PSF) | 114 |
| abstract_inverted_index.0.3%, | 183 |
| abstract_inverted_index.0.8%, | 196 |
| abstract_inverted_index.Ghost | 28 |
| abstract_inverted_index.Using | 124 |
| abstract_inverted_index.after | 191 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.below | 206 |
| abstract_inverted_index.ghost | 3, 53, 80, 87, 101, 116, 128, 146, 157, 173 |
| abstract_inverted_index.image | 4, 29, 54, 81, 88, 102, 117, 129, 136, 147, 158, 174 |
| abstract_inverted_index.model | 90, 105 |
| abstract_inverted_index.point | 111 |
| abstract_inverted_index.rate. | 27 |
| abstract_inverted_index.their | 120 |
| abstract_inverted_index.0.06%. | 207 |
| abstract_inverted_index.across | 149 |
| abstract_inverted_index.affect | 31, 60 |
| abstract_inverted_index.bands. | 163 |
| abstract_inverted_index.before | 189 |
| abstract_inverted_index.change | 199 |
| abstract_inverted_index.curves | 188 |
| abstract_inverted_index.during | 79 |
| abstract_inverted_index.energy | 121, 170 |
| abstract_inverted_index.impact | 74 |
| abstract_inverted_index.reduce | 12 |
| abstract_inverted_index.spread | 112 |
| abstract_inverted_index.system | 20, 39 |
| abstract_inverted_index.target | 25, 145 |
| abstract_inverted_index.certain | 8 |
| abstract_inverted_index.images, | 2 |
| abstract_inverted_index.images. | 70 |
| abstract_inverted_index.imaging | 18 |
| abstract_inverted_index.methods | 57 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.results | 166 |
| abstract_inverted_index.thereby | 46 |
| abstract_inverted_index.typical | 143 |
| abstract_inverted_index.various | 161 |
| abstract_inverted_index.absolute | 65, 201 |
| abstract_inverted_index.accuracy | 15, 35, 42, 67, 78, 133, 204 |
| abstract_inverted_index.decrease | 23 |
| abstract_inverted_index.function | 113 |
| abstract_inverted_index.minimize | 72 |
| abstract_inverted_index.proposed | 98 |
| abstract_inverted_index.regional | 144 |
| abstract_inverted_index.relative | 63 |
| abstract_inverted_index.residual | 55, 82, 103 |
| abstract_inverted_index.spectral | 44, 76, 151, 162, 187 |
| abstract_inverted_index.achieving | 153 |
| abstract_inverted_index.approach, | 99 |
| abstract_inverted_index.automated | 154 |
| abstract_inverted_index.channels, | 152 |
| abstract_inverted_index.decreased | 179 |
| abstract_inverted_index.detection | 19, 38 |
| abstract_inverted_index.different | 150, 177 |
| abstract_inverted_index.exceeding | 6 |
| abstract_inverted_index.iterative | 93 |
| abstract_inverted_index.optimized | 142 |
| abstract_inverted_index.residuals | 5, 30, 118, 130, 148, 159, 175 |
| abstract_inverted_index.threshold | 9 |
| abstract_inverted_index.algorithm. | 95 |
| abstract_inverted_index.correction | 56, 155, 192 |
| abstract_inverted_index.inversion. | 51 |
| abstract_inverted_index.proportion | 126, 171 |
| abstract_inverted_index.variations | 185 |
| abstract_inverted_index.calibration | 66, 77, 137, 203 |
| abstract_inverted_index.constructed | 107 |
| abstract_inverted_index.correction, | 83 |
| abstract_inverted_index.degradation | 89, 104 |
| abstract_inverted_index.influencing | 47 |
| abstract_inverted_index.iteratively | 141 |
| abstract_inverted_index.qualitative | 48 |
| abstract_inverted_index.radiometric | 202 |
| abstract_inverted_index.recognition | 14, 34 |
| abstract_inverted_index.wavelengths | 178 |
| abstract_inverted_index.Conventional | 52 |
| abstract_inverted_index.calibration, | 45 |
| abstract_inverted_index.constraints, | 139 |
| abstract_inverted_index.distribution | 122 |
| abstract_inverted_index.experimental | 165 |
| abstract_inverted_index.optimization | 94 |
| abstract_inverted_index.quantitative | 50 |
| abstract_inverted_index.hyperspectral | 1, 69, 135 |
| abstract_inverted_index.significantly | 59 |
| abstract_inverted_index.identification | 26 |
| abstract_inverted_index.characteristics. | 123 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100406638 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210144662 |
| citation_normalized_percentile |