Hyperspectral reflectance‐based partial least squares regression models for predicting cotton leaf physiological traits Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/ppj2.70042
Alterations in the mechanistic drivers of photosynthesis have the potential to improve crop productivity, but their measurement is inherently time‐consuming using traditional methods. High‐throughput approaches to estimate photosynthesis using hyperspectral reflectance could be developed by leveraging variation in cotton ( Gossypium hirsutum L.) leaf traits generated through nitrogen (N) management, synthetic growth regulation strategies, and leaf position within the canopy. Currently, no such models exist for cotton, and interactions among the aforementioned factors are relatively unexplored for cotton leaf traits. This study aimed to (1) evaluate the effects of N application rate, mepiquat chloride (MC) management, and leaf position within the canopy on photosynthesis and its components, and (2) develop and validate hyperspectral reflectance‐based partial least squares regression (PLSR) models for predicting cotton leaf physiological traits. N rate and leaf position interacted to affect net photosynthetic rate ( A N ), electron transport rate, chlorophyll a, and chlorophyll b, while MC influenced only leaf pigments and specific leaf weight (SLW). A N reductions under N deficiency were driven by declines in the maximum rate of Rubisco carboxylation ( V c,max ) and ribulose‐1,5‐bisphosphate regeneration ( J max ), whereas high N had no effect on A N . PLSR models exhibited good to high predictive accuracy, with R 2 values ranging from 0.62 to 0.87 for most traits, except for SLW. These findings enhance our understanding of the physiological responses to N rate, MC strategy, and leaf position and highlight the potential of hyperspectral reflectance‐based PLSR as a high‐throughput tool for predicting leaf physiological traits to improve photosynthetic efficiency in cotton.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/ppj2.70042
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.70042
- OA Status
- gold
- References
- 99
- OpenAlex ID
- https://openalex.org/W4414524776
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414524776Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/ppj2.70042Digital Object Identifier
- Title
-
Hyperspectral reflectance‐based partial least squares regression models for predicting cotton leaf physiological traitsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-25Full publication date if available
- Authors
-
Ved Parkash, John L. Snider, Christopher M. Montes, Elizabeth A. Ainsworth, Álvaro Sanz‐SáezList of authors in order
- Landing page
-
https://doi.org/10.1002/ppj2.70042Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.70042Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.70042Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
99Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414524776 |
|---|---|
| doi | https://doi.org/10.1002/ppj2.70042 |
| ids.doi | https://doi.org/10.1002/ppj2.70042 |
| ids.openalex | https://openalex.org/W4414524776 |
| fwci | 0.0 |
| type | article |
| title | Hyperspectral reflectance‐based partial least squares regression models for predicting cotton leaf physiological traits |
| biblio.issue | 1 |
| biblio.volume | 8 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| is_xpac | False |
| apc_list.value | 1750 |
| apc_list.currency | USD |
| apc_list.value_usd | 1750 |
| apc_paid.value | 1750 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1750 |
| language | en |
| locations[0].id | doi:10.1002/ppj2.70042 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210236857 |
| locations[0].source.issn | 2578-2703 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2578-2703 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Plant Phenome Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.70042 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Plant Phenome Journal |
| locations[0].landing_page_url | https://doi.org/10.1002/ppj2.70042 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5046429573 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0509-0346 |
| authorships[0].author.display_name | Ved Parkash |
| authorships[0].countries | GE, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165733156, https://openalex.org/I4210126868 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210126868 |
| authorships[0].institutions[0].ror | https://ror.org/02bjhwk41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210126868 |
| authorships[0].institutions[0].country_code | GE |
| authorships[0].institutions[0].display_name | University of Georgia |
| authorships[0].institutions[1].id | https://openalex.org/I165733156 |
| authorships[0].institutions[1].ror | https://ror.org/00te3t702 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I165733156 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Georgia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ved Parkash |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, USA |
| authorships[1].author.id | https://openalex.org/A5061803603 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6535-7711 |
| authorships[1].author.display_name | John L. Snider |
| authorships[1].countries | GE, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165733156, https://openalex.org/I4210126868 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210126868 |
| authorships[1].institutions[0].ror | https://ror.org/02bjhwk41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210126868 |
| authorships[1].institutions[0].country_code | GE |
| authorships[1].institutions[0].display_name | University of Georgia |
| authorships[1].institutions[1].id | https://openalex.org/I165733156 |
| authorships[1].institutions[1].ror | https://ror.org/00te3t702 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I165733156 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Georgia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | John L. Snider |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, USA |
| authorships[2].author.id | https://openalex.org/A5041542395 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7295-3092 |
| authorships[2].author.display_name | Christopher M. Montes |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157725225 |
| authorships[2].affiliations[0].raw_affiliation_string | Departments of Crop Sciences and Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA |
| authorships[2].institutions[0].id | https://openalex.org/I157725225 |
| authorships[2].institutions[0].ror | https://ror.org/047426m28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157725225 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Illinois Urbana-Champaign |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Christopher M. Montes |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Departments of Crop Sciences and Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA |
| authorships[3].author.id | https://openalex.org/A5090807521 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3199-8999 |
| authorships[3].author.display_name | Elizabeth A. Ainsworth |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157725225 |
| authorships[3].affiliations[0].raw_affiliation_string | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA |
| authorships[3].institutions[0].id | https://openalex.org/I157725225 |
| authorships[3].institutions[0].ror | https://ror.org/047426m28 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157725225 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Illinois Urbana-Champaign |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Elizabeth A. Ainsworth |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA |
| authorships[4].author.id | https://openalex.org/A5067283818 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7754-4618 |
| authorships[4].author.display_name | Álvaro Sanz‐Sáez |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I82497590 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Crop Soil and Environmental Sciences, Auburn University, Auburn, Alabama, USA |
| authorships[4].institutions[0].id | https://openalex.org/I82497590 |
| authorships[4].institutions[0].ror | https://ror.org/02v80fc35 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I82497590 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Auburn University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Alvaro Sanz‐Saez |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Crop Soil and Environmental Sciences, Auburn University, Auburn, Alabama, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.70042 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hyperspectral reflectance‐based partial least squares regression models for predicting cotton leaf physiological traits |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/ppj2.70042 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210236857 |
| best_oa_location.source.issn | 2578-2703 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2578-2703 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Plant Phenome Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.70042 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Plant Phenome Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1002/ppj2.70042 |
| primary_location.id | doi:10.1002/ppj2.70042 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210236857 |
| primary_location.source.issn | 2578-2703 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2578-2703 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Plant Phenome Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.70042 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Plant Phenome Journal |
| primary_location.landing_page_url | https://doi.org/10.1002/ppj2.70042 |
| publication_date | 2025-09-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4386687118, https://openalex.org/W2035691071, https://openalex.org/W169869454, https://openalex.org/W3169138508, https://openalex.org/W2107224888, https://openalex.org/W2001314932, https://openalex.org/W4396496433, https://openalex.org/W3011776330, https://openalex.org/W2205157337, https://openalex.org/W2981458643, https://openalex.org/W2616754845, https://openalex.org/W4292684442, https://openalex.org/W2176094325, https://openalex.org/W2015228135, https://openalex.org/W4232838717, https://openalex.org/W4385751443, https://openalex.org/W2947152669, https://openalex.org/W2999480791, https://openalex.org/W4213425478, https://openalex.org/W2079194740, https://openalex.org/W2166401373, https://openalex.org/W2159177329, https://openalex.org/W3198746050, https://openalex.org/W2141488040, https://openalex.org/W4396671514, https://openalex.org/W4387108001, https://openalex.org/W4393012131, https://openalex.org/W2033281038, https://openalex.org/W2176040966, https://openalex.org/W4319300258, https://openalex.org/W3205715797, https://openalex.org/W3174453924, https://openalex.org/W2112312060, https://openalex.org/W1944729816, https://openalex.org/W2116459611, https://openalex.org/W1980984835, https://openalex.org/W3008623787, https://openalex.org/W2946556606, https://openalex.org/W2921411028, https://openalex.org/W2140959043, https://openalex.org/W2006174865, https://openalex.org/W4224238886, https://openalex.org/W3104035342, https://openalex.org/W577612239, https://openalex.org/W4402806591, https://openalex.org/W4318479511, https://openalex.org/W4401973020, https://openalex.org/W4394762733, https://openalex.org/W2893993294, https://openalex.org/W2090629016, https://openalex.org/W4405680279, https://openalex.org/W2090768752, https://openalex.org/W2060985336, https://openalex.org/W2030687548, https://openalex.org/W2101552670, https://openalex.org/W2152103238, https://openalex.org/W2967197330, https://openalex.org/W2779955274, https://openalex.org/W4313374863, https://openalex.org/W2972214153, https://openalex.org/W2014285983, https://openalex.org/W4210952304, https://openalex.org/W3165944125, https://openalex.org/W2402483167, https://openalex.org/W4210864365, https://openalex.org/W2594892637, https://openalex.org/W2791278439, https://openalex.org/W4321788580, https://openalex.org/W4386001566, https://openalex.org/W2980427619, https://openalex.org/W3007071128, https://openalex.org/W2138696096, https://openalex.org/W2161483301, https://openalex.org/W4220844720, https://openalex.org/W4406164740, https://openalex.org/W4408068952, https://openalex.org/W2016528617, https://openalex.org/W2160150081, https://openalex.org/W1869646911, https://openalex.org/W2567154847, https://openalex.org/W2004102760, https://openalex.org/W2001458937, https://openalex.org/W4224283181, https://openalex.org/W2655014113, https://openalex.org/W2046404820, https://openalex.org/W2117225984, https://openalex.org/W3197081368, https://openalex.org/W2141974358, https://openalex.org/W2988596226, https://openalex.org/W4377011327, https://openalex.org/W1964604562, https://openalex.org/W4220746756, https://openalex.org/W2396330268, https://openalex.org/W2182403584, https://openalex.org/W2116514849, https://openalex.org/W1924055865, https://openalex.org/W4237373931, https://openalex.org/W4237927306, https://openalex.org/W2073503722 |
| referenced_works_count | 99 |
| abstract_inverted_index.( | 40, 138, 178, 185 |
| abstract_inverted_index.) | 181 |
| abstract_inverted_index.. | 198 |
| abstract_inverted_index.2 | 209 |
| abstract_inverted_index.A | 139, 161, 196 |
| abstract_inverted_index.J | 186 |
| abstract_inverted_index.N | 90, 127, 140, 162, 165, 191, 197, 232 |
| abstract_inverted_index.R | 208 |
| abstract_inverted_index.V | 179 |
| abstract_inverted_index.a | 248 |
| abstract_inverted_index.), | 141, 188 |
| abstract_inverted_index.MC | 151, 234 |
| abstract_inverted_index.a, | 146 |
| abstract_inverted_index.as | 247 |
| abstract_inverted_index.b, | 149 |
| abstract_inverted_index.be | 33 |
| abstract_inverted_index.by | 35, 169 |
| abstract_inverted_index.in | 2, 38, 171, 260 |
| abstract_inverted_index.is | 18 |
| abstract_inverted_index.no | 62, 193 |
| abstract_inverted_index.of | 6, 89, 175, 227, 243 |
| abstract_inverted_index.on | 103, 195 |
| abstract_inverted_index.to | 11, 26, 84, 133, 203, 214, 231, 256 |
| abstract_inverted_index.(1) | 85 |
| abstract_inverted_index.(2) | 109 |
| abstract_inverted_index.(N) | 49 |
| abstract_inverted_index.L.) | 43 |
| abstract_inverted_index.and | 55, 68, 97, 105, 108, 111, 129, 147, 156, 182, 236, 239 |
| abstract_inverted_index.are | 74 |
| abstract_inverted_index.but | 15 |
| abstract_inverted_index.for | 66, 77, 121, 216, 220, 251 |
| abstract_inverted_index.had | 192 |
| abstract_inverted_index.its | 106 |
| abstract_inverted_index.max | 187 |
| abstract_inverted_index.net | 135 |
| abstract_inverted_index.our | 225 |
| abstract_inverted_index.the | 3, 9, 59, 71, 87, 101, 172, 228, 241 |
| abstract_inverted_index.(MC) | 95 |
| abstract_inverted_index.0.62 | 213 |
| abstract_inverted_index.0.87 | 215 |
| abstract_inverted_index.PLSR | 199, 246 |
| abstract_inverted_index.SLW. | 221 |
| abstract_inverted_index.This | 81 |
| abstract_inverted_index.crop | 13 |
| abstract_inverted_index.from | 212 |
| abstract_inverted_index.good | 202 |
| abstract_inverted_index.have | 8 |
| abstract_inverted_index.high | 190, 204 |
| abstract_inverted_index.leaf | 44, 56, 79, 98, 124, 130, 154, 158, 237, 253 |
| abstract_inverted_index.most | 217 |
| abstract_inverted_index.only | 153 |
| abstract_inverted_index.rate | 128, 137, 174 |
| abstract_inverted_index.such | 63 |
| abstract_inverted_index.tool | 250 |
| abstract_inverted_index.were | 167 |
| abstract_inverted_index.with | 207 |
| abstract_inverted_index.These | 222 |
| abstract_inverted_index.aimed | 83 |
| abstract_inverted_index.among | 70 |
| abstract_inverted_index.c,max | 180 |
| abstract_inverted_index.could | 32 |
| abstract_inverted_index.exist | 65 |
| abstract_inverted_index.least | 116 |
| abstract_inverted_index.rate, | 92, 144, 233 |
| abstract_inverted_index.study | 82 |
| abstract_inverted_index.their | 16 |
| abstract_inverted_index.under | 164 |
| abstract_inverted_index.using | 21, 29 |
| abstract_inverted_index.while | 150 |
| abstract_inverted_index.(PLSR) | 119 |
| abstract_inverted_index.(SLW). | 160 |
| abstract_inverted_index.affect | 134 |
| abstract_inverted_index.canopy | 102 |
| abstract_inverted_index.cotton | 39, 78, 123 |
| abstract_inverted_index.driven | 168 |
| abstract_inverted_index.effect | 194 |
| abstract_inverted_index.except | 219 |
| abstract_inverted_index.growth | 52 |
| abstract_inverted_index.models | 64, 120, 200 |
| abstract_inverted_index.traits | 45, 255 |
| abstract_inverted_index.values | 210 |
| abstract_inverted_index.weight | 159 |
| abstract_inverted_index.within | 58, 100 |
| abstract_inverted_index.Rubisco | 176 |
| abstract_inverted_index.canopy. | 60 |
| abstract_inverted_index.cotton, | 67 |
| abstract_inverted_index.cotton. | 261 |
| abstract_inverted_index.develop | 110 |
| abstract_inverted_index.drivers | 5 |
| abstract_inverted_index.effects | 88 |
| abstract_inverted_index.enhance | 224 |
| abstract_inverted_index.factors | 73 |
| abstract_inverted_index.improve | 12, 257 |
| abstract_inverted_index.maximum | 173 |
| abstract_inverted_index.partial | 115 |
| abstract_inverted_index.ranging | 211 |
| abstract_inverted_index.squares | 117 |
| abstract_inverted_index.through | 47 |
| abstract_inverted_index.traits, | 218 |
| abstract_inverted_index.traits. | 80, 126 |
| abstract_inverted_index.whereas | 189 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.chloride | 94 |
| abstract_inverted_index.declines | 170 |
| abstract_inverted_index.electron | 142 |
| abstract_inverted_index.estimate | 27 |
| abstract_inverted_index.evaluate | 86 |
| abstract_inverted_index.findings | 223 |
| abstract_inverted_index.hirsutum | 42 |
| abstract_inverted_index.mepiquat | 93 |
| abstract_inverted_index.methods. | 23 |
| abstract_inverted_index.nitrogen | 48 |
| abstract_inverted_index.pigments | 155 |
| abstract_inverted_index.position | 57, 99, 131, 238 |
| abstract_inverted_index.specific | 157 |
| abstract_inverted_index.validate | 112 |
| abstract_inverted_index.Gossypium | 41 |
| abstract_inverted_index.accuracy, | 206 |
| abstract_inverted_index.developed | 34 |
| abstract_inverted_index.exhibited | 201 |
| abstract_inverted_index.generated | 46 |
| abstract_inverted_index.highlight | 240 |
| abstract_inverted_index.potential | 10, 242 |
| abstract_inverted_index.responses | 230 |
| abstract_inverted_index.strategy, | 235 |
| abstract_inverted_index.synthetic | 51 |
| abstract_inverted_index.transport | 143 |
| abstract_inverted_index.variation | 37 |
| abstract_inverted_index.Currently, | 61 |
| abstract_inverted_index.approaches | 25 |
| abstract_inverted_index.deficiency | 166 |
| abstract_inverted_index.efficiency | 259 |
| abstract_inverted_index.influenced | 152 |
| abstract_inverted_index.inherently | 19 |
| abstract_inverted_index.interacted | 132 |
| abstract_inverted_index.leveraging | 36 |
| abstract_inverted_index.predicting | 122, 252 |
| abstract_inverted_index.predictive | 205 |
| abstract_inverted_index.reductions | 163 |
| abstract_inverted_index.regression | 118 |
| abstract_inverted_index.regulation | 53 |
| abstract_inverted_index.relatively | 75 |
| abstract_inverted_index.unexplored | 76 |
| abstract_inverted_index.Alterations | 1 |
| abstract_inverted_index.application | 91 |
| abstract_inverted_index.chlorophyll | 145, 148 |
| abstract_inverted_index.components, | 107 |
| abstract_inverted_index.management, | 50, 96 |
| abstract_inverted_index.measurement | 17 |
| abstract_inverted_index.mechanistic | 4 |
| abstract_inverted_index.reflectance | 31 |
| abstract_inverted_index.strategies, | 54 |
| abstract_inverted_index.traditional | 22 |
| abstract_inverted_index.interactions | 69 |
| abstract_inverted_index.regeneration | 184 |
| abstract_inverted_index.carboxylation | 177 |
| abstract_inverted_index.hyperspectral | 30, 113, 244 |
| abstract_inverted_index.physiological | 125, 229, 254 |
| abstract_inverted_index.productivity, | 14 |
| abstract_inverted_index.understanding | 226 |
| abstract_inverted_index.aforementioned | 72 |
| abstract_inverted_index.photosynthesis | 7, 28, 104 |
| abstract_inverted_index.photosynthetic | 136, 258 |
| abstract_inverted_index.time‐consuming | 20 |
| abstract_inverted_index.High‐throughput | 24 |
| abstract_inverted_index.high‐throughput | 249 |
| abstract_inverted_index.reflectance‐based | 114, 245 |
| abstract_inverted_index.ribulose‐1,5‐bisphosphate | 183 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5046429573 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I165733156, https://openalex.org/I4210126868 |
| citation_normalized_percentile.value | 0.50140123 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |