I-MAESTRO data: 42 million trees from three large European landscapes in France, Poland and Slovenia Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.7462440
Here we present three datasets describing three large European landscapes in France (Bauges Geopark - 89,000 ha), Poland (Milicz forest district - 21,000 ha) and Slovenia (Snežnik forest - 4,700 ha) down to the tree level. Individual trees were generated combining inventory plot data, vegetation maps and Airborne Laser Scanning (ALS) data. Together, these landscapes (hereafter virtual landscapes) cover more than 100,000 ha including about 64,000 ha of forest and consist of more than 42 million trees of 51 different species. For each virtual landscape we provide a table (in .csv format) with the following columns:- cellID25: the unique ID of each 25x25 m² cell- sp: species latin names- n: number of trees. n is an integer >= 1, meaning that a specific set of species "sp", diameter "dbh" and height "h" can be present multiple times in a cell.- dbh: tree diameter at breast height (cm)- h: tree height (m) We also provide, for each virtual landscape, a raster (in .asc format) with the cell IDs (cellID25) which makes data spatialisation possible. The coordinate reference systems are EPSG: 2154 for the Bauges, EPSG: 2180 for Milicz, and EPSG: 3912 for Sneznik. The v2.0.0 presents the algorithm in its final state. Finally, we provide a proof of how our algorithm makes it possible to reach the total BA and the BA proportion of broadleaf trees provided by the ALS mapping using the alpha correction coefficient and how it maintains the Dg ratios observed on the field plots between the different species (see algorithm presented in the associated Open Research Europe article). Below is an example of R code that opens the datasets and creates a tree density map. ------------------------------------------------------------# load package library(terra) library(dplyr) # set work directory setwd() # define path to the I-MAESTRO_data folder # load tree data tree % group_by(cellID25) %>% summarise(n = sum(n)) # merge the two dataframes dens <- left_join(cellIDdf, dens, join_by(cellID25)) # add density to raster cellID$dens <- dens$n # plot density map plot(cellID$dens)
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.7462440
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393890242
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393890242Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.7462440Digital Object Identifier
- Title
-
I-MAESTRO data: 42 million trees from three large European landscapes in France, Poland and SloveniaWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-24Full publication date if available
- Authors
-
Raphaël Aussenac, Jean‐Matthieu Monnet, Matija Klopčić, Paweł Hawryło, Jarosław Socha, Mats Mahnken, Martin Gutsch, Thomas Cordonnier, Patrick ValletList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.7462440Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.7462440Direct OA link when available
- Concepts
-
Geography, ForestryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393890242 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.7462440 |
| ids.doi | https://doi.org/10.5281/zenodo.7462440 |
| ids.openalex | https://openalex.org/W4393890242 |
| fwci | |
| type | dataset |
| title | I-MAESTRO data: 42 million trees from three large European landscapes in France, Poland and Slovenia |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.984499990940094 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T11880 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9488000273704529 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2309 |
| topics[1].subfield.display_name | Nature and Landscape Conservation |
| topics[1].display_name | Forest ecology and management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205649164 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5731281042098999 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[0].display_name | Geography |
| concepts[1].id | https://openalex.org/C97137747 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3384368121623993 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[1].display_name | Forestry |
| keywords[0].id | https://openalex.org/keywords/geography |
| keywords[0].score | 0.5731281042098999 |
| keywords[0].display_name | Geography |
| keywords[1].id | https://openalex.org/keywords/forestry |
| keywords[1].score | 0.3384368121623993 |
| keywords[1].display_name | Forestry |
| language | en |
| locations[0].id | doi:10.5281/zenodo.7462440 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.7462440 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5028181803 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1191-4716 |
| authorships[0].author.display_name | Raphaël Aussenac |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I131077856, https://openalex.org/I19894307, https://openalex.org/I4210088668, https://openalex.org/I899635006 |
| authorships[0].affiliations[0].raw_affiliation_string | Univ. Grenoble Alpes, INRAE & Univ Montpellier, CIRAD |
| authorships[0].institutions[0].id | https://openalex.org/I131077856 |
| authorships[0].institutions[0].ror | https://ror.org/05kpkpg04 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I131077856 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Centre de Coopération Internationale en Recherche Agronomique pour le Développement |
| authorships[0].institutions[1].id | https://openalex.org/I4210088668 |
| authorships[0].institutions[1].ror | https://ror.org/003vg9w96 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210088668 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement |
| authorships[0].institutions[2].id | https://openalex.org/I899635006 |
| authorships[0].institutions[2].ror | https://ror.org/02rx3b187 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I899635006 |
| authorships[0].institutions[2].country_code | FR |
| authorships[0].institutions[2].display_name | Université Grenoble Alpes |
| authorships[0].institutions[3].id | https://openalex.org/I19894307 |
| authorships[0].institutions[3].ror | https://ror.org/051escj72 |
| authorships[0].institutions[3].type | education |
| authorships[0].institutions[3].lineage | https://openalex.org/I19894307 |
| authorships[0].institutions[3].country_code | FR |
| authorships[0].institutions[3].display_name | Université de Montpellier |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Raphaël Aussenac |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Univ. Grenoble Alpes, INRAE & Univ Montpellier, CIRAD |
| authorships[1].author.id | https://openalex.org/A5022545488 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9948-9891 |
| authorships[1].author.display_name | Jean‐Matthieu Monnet |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210088668, https://openalex.org/I899635006 |
| authorships[1].affiliations[0].raw_affiliation_string | Univ. Grenoble Alpes, INRAE |
| authorships[1].institutions[0].id | https://openalex.org/I4210088668 |
| authorships[1].institutions[0].ror | https://ror.org/003vg9w96 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210088668 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement |
| authorships[1].institutions[1].id | https://openalex.org/I899635006 |
| authorships[1].institutions[1].ror | https://ror.org/02rx3b187 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I899635006 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Université Grenoble Alpes |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Jean-Matthieu Monnet |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Univ. Grenoble Alpes, INRAE |
| authorships[2].author.id | https://openalex.org/A5029041076 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2619-9073 |
| authorships[2].author.display_name | Matija Klopčić |
| authorships[2].countries | SI |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I153976015 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Ljubljana |
| authorships[2].institutions[0].id | https://openalex.org/I153976015 |
| authorships[2].institutions[0].ror | https://ror.org/05njb9z20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I153976015 |
| authorships[2].institutions[0].country_code | SI |
| authorships[2].institutions[0].display_name | University of Ljubljana |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Matija Klopčič |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Ljubljana |
| authorships[3].author.id | https://openalex.org/A5004550702 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0170-8866 |
| authorships[3].author.display_name | Paweł Hawryło |
| authorships[3].countries | PL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3019092743 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Agriculture in Krakow |
| authorships[3].institutions[0].id | https://openalex.org/I3019092743 |
| authorships[3].institutions[0].ror | https://ror.org/012dxyr07 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3019092743 |
| authorships[3].institutions[0].country_code | PL |
| authorships[3].institutions[0].display_name | University of Agriculture in Krakow |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None Paweł Hawryło |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Agriculture in Krakow |
| authorships[4].author.id | https://openalex.org/A5080371410 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9568-5764 |
| authorships[4].author.display_name | Jarosław Socha |
| authorships[4].countries | PL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3019092743 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Agriculture in Krakow |
| authorships[4].institutions[0].id | https://openalex.org/I3019092743 |
| authorships[4].institutions[0].ror | https://ror.org/012dxyr07 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I3019092743 |
| authorships[4].institutions[0].country_code | PL |
| authorships[4].institutions[0].display_name | University of Agriculture in Krakow |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | None Jarosław Socha |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Agriculture in Krakow |
| authorships[5].author.id | https://openalex.org/A5112896084 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Mats Mahnken |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I60200437 |
| authorships[5].affiliations[0].raw_affiliation_string | Potsdam Institute for Climate Impact Research |
| authorships[5].institutions[0].id | https://openalex.org/I60200437 |
| authorships[5].institutions[0].ror | https://ror.org/03e8s1d88 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I315704651, https://openalex.org/I60200437 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Potsdam Institute for Climate Impact Research |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | None Mats Mahnken |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Potsdam Institute for Climate Impact Research |
| authorships[6].author.id | https://openalex.org/A5013751201 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7109-273X |
| authorships[6].author.display_name | Martin Gutsch |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I60200437 |
| authorships[6].affiliations[0].raw_affiliation_string | Potsdam Institute for Climate Impact Research |
| authorships[6].institutions[0].id | https://openalex.org/I60200437 |
| authorships[6].institutions[0].ror | https://ror.org/03e8s1d88 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I315704651, https://openalex.org/I60200437 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Potsdam Institute for Climate Impact Research |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | None Martin Gutsch |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Potsdam Institute for Climate Impact Research |
| authorships[7].author.id | https://openalex.org/A5106027612 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3684-4662 |
| authorships[7].author.display_name | Thomas Cordonnier |
| authorships[7].countries | FR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210088668, https://openalex.org/I4210121264, https://openalex.org/I899635006 |
| authorships[7].affiliations[0].raw_affiliation_string | Univ. Grenoble Alpes, INRAE & Office National des Forêts |
| authorships[7].institutions[0].id | https://openalex.org/I4210088668 |
| authorships[7].institutions[0].ror | https://ror.org/003vg9w96 |
| authorships[7].institutions[0].type | government |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210088668 |
| authorships[7].institutions[0].country_code | FR |
| authorships[7].institutions[0].display_name | Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement |
| authorships[7].institutions[1].id | https://openalex.org/I4210121264 |
| authorships[7].institutions[1].ror | https://ror.org/01yekza56 |
| authorships[7].institutions[1].type | government |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210121264 |
| authorships[7].institutions[1].country_code | FR |
| authorships[7].institutions[1].display_name | Office National des Forêts |
| authorships[7].institutions[2].id | https://openalex.org/I899635006 |
| authorships[7].institutions[2].ror | https://ror.org/02rx3b187 |
| authorships[7].institutions[2].type | education |
| authorships[7].institutions[2].lineage | https://openalex.org/I899635006 |
| authorships[7].institutions[2].country_code | FR |
| authorships[7].institutions[2].display_name | Université Grenoble Alpes |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | None Thomas Cordonnier |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Univ. Grenoble Alpes, INRAE & Office National des Forêts |
| authorships[8].author.id | https://openalex.org/A5025284451 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2649-9447 |
| authorships[8].author.display_name | Patrick Vallet |
| authorships[8].countries | FR |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210088668, https://openalex.org/I899635006 |
| authorships[8].affiliations[0].raw_affiliation_string | Univ. Grenoble Alpes, INRAE |
| authorships[8].institutions[0].id | https://openalex.org/I4210088668 |
| authorships[8].institutions[0].ror | https://ror.org/003vg9w96 |
| authorships[8].institutions[0].type | government |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210088668 |
| authorships[8].institutions[0].country_code | FR |
| authorships[8].institutions[0].display_name | Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement |
| authorships[8].institutions[1].id | https://openalex.org/I899635006 |
| authorships[8].institutions[1].ror | https://ror.org/02rx3b187 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I899635006 |
| authorships[8].institutions[1].country_code | FR |
| authorships[8].institutions[1].display_name | Université Grenoble Alpes |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | None Patrick Vallet |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Univ. Grenoble Alpes, INRAE |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.7462440 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | I-MAESTRO data: 42 million trees from three large European landscapes in France, Poland and Slovenia |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.984499990940094 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2383882895, https://openalex.org/W3111098267, https://openalex.org/W2370206093, https://openalex.org/W264709706, https://openalex.org/W2375009411, https://openalex.org/W2371019958, https://openalex.org/W2092269694, https://openalex.org/W2063002724, https://openalex.org/W3150437343 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.7462440 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.7462440 |
| primary_location.id | doi:10.5281/zenodo.7462440 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.7462440 |
| publication_date | 2023-11-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.# | 283, 288, 295, 305, 312, 317, 319, 323, 325, 329, 331, 335, 346, 362, 372, 380 |
| abstract_inverted_index.- | 14, 21, 28 |
| abstract_inverted_index.= | 303, 360 |
| abstract_inverted_index.R | 266 |
| abstract_inverted_index.a | 87, 121, 138, 158, 204, 274 |
| abstract_inverted_index.n | 113 |
| abstract_inverted_index.1, | 118 |
| abstract_inverted_index.42 | 74 |
| abstract_inverted_index.51 | 78 |
| abstract_inverted_index.<- | 300, 310, 321, 327, 333, 341, 344, 354, 368, 378 |
| abstract_inverted_index.>= | 117 |
| abstract_inverted_index.BA | 217, 220 |
| abstract_inverted_index.Dg | 240 |
| abstract_inverted_index.ID | 99 |
| abstract_inverted_index.We | 151 |
| abstract_inverted_index.an | 115, 263 |
| abstract_inverted_index.at | 143 |
| abstract_inverted_index.be | 133 |
| abstract_inverted_index.by | 226 |
| abstract_inverted_index.h: | 147 |
| abstract_inverted_index.ha | 62, 66 |
| abstract_inverted_index.in | 10, 137, 197, 254 |
| abstract_inverted_index.is | 114, 262 |
| abstract_inverted_index.it | 211, 237 |
| abstract_inverted_index.n: | 109 |
| abstract_inverted_index.of | 67, 71, 77, 100, 111, 124, 206, 222, 265 |
| abstract_inverted_index.on | 243 |
| abstract_inverted_index.to | 32, 213, 291, 375 |
| abstract_inverted_index.we | 1, 85, 202 |
| abstract_inverted_index."h" | 131 |
| abstract_inverted_index.%>% | 356, 358 |
| abstract_inverted_index.(in | 89, 160 |
| abstract_inverted_index.(m) | 150 |
| abstract_inverted_index.ALS | 228 |
| abstract_inverted_index.For | 81 |
| abstract_inverted_index.IDs | 166 |
| abstract_inverted_index.The | 173, 192 |
| abstract_inverted_index.add | 373 |
| abstract_inverted_index.and | 24, 46, 69, 129, 187, 218, 235, 272 |
| abstract_inverted_index.are | 177 |
| abstract_inverted_index.can | 132 |
| abstract_inverted_index.for | 154, 180, 185, 190 |
| abstract_inverted_index.ha) | 23, 30 |
| abstract_inverted_index.how | 207, 236 |
| abstract_inverted_index.its | 198 |
| abstract_inverted_index.map | 383 |
| abstract_inverted_index.m² | 103 |
| abstract_inverted_index.our | 208 |
| abstract_inverted_index.sep | 302 |
| abstract_inverted_index.set | 123, 284, 313 |
| abstract_inverted_index.sp: | 105 |
| abstract_inverted_index.the | 33, 93, 97, 164, 181, 195, 215, 219, 227, 231, 239, 244, 248, 255, 270, 292, 364 |
| abstract_inverted_index.two | 365 |
| abstract_inverted_index.',') | 304 |
| abstract_inverted_index.(see | 251 |
| abstract_inverted_index..asc | 161 |
| abstract_inverted_index..csv | 90 |
| abstract_inverted_index.2154 | 179 |
| abstract_inverted_index.2180 | 184 |
| abstract_inverted_index.3912 | 189 |
| abstract_inverted_index.Here | 0 |
| abstract_inverted_index.Open | 257 |
| abstract_inverted_index.also | 152 |
| abstract_inverted_index.cell | 165 |
| abstract_inverted_index.code | 267 |
| abstract_inverted_index.data | 170, 298, 308 |
| abstract_inverted_index.dbh: | 140 |
| abstract_inverted_index.dens | 353, 367 |
| abstract_inverted_index.down | 31 |
| abstract_inverted_index.each | 82, 101, 155 |
| abstract_inverted_index.from | 350 |
| abstract_inverted_index.ha), | 16 |
| abstract_inverted_index.into | 338 |
| abstract_inverted_index.load | 279, 296, 306 |
| abstract_inverted_index.map. | 277 |
| abstract_inverted_index.maps | 45 |
| abstract_inverted_index.more | 59, 72 |
| abstract_inverted_index.path | 290 |
| abstract_inverted_index.plot | 42, 381 |
| abstract_inverted_index.than | 60, 73 |
| abstract_inverted_index.that | 120, 268 |
| abstract_inverted_index.tree | 34, 141, 148, 275, 297, 299, 348, 351, 355 |
| abstract_inverted_index.were | 38 |
| abstract_inverted_index.with | 92, 163 |
| abstract_inverted_index.work | 285 |
| abstract_inverted_index."dbh" | 128 |
| abstract_inverted_index."sp", | 126 |
| abstract_inverted_index.(ALS) | 50 |
| abstract_inverted_index.(cm)- | 146 |
| abstract_inverted_index.25x25 | 102 |
| abstract_inverted_index.4,700 | 29 |
| abstract_inverted_index.Below | 261 |
| abstract_inverted_index.EPSG: | 178, 183, 188 |
| abstract_inverted_index.Laser | 48 |
| abstract_inverted_index.about | 64 |
| abstract_inverted_index.alpha | 232 |
| abstract_inverted_index.cell- | 104 |
| abstract_inverted_index.cover | 58 |
| abstract_inverted_index.data, | 43 |
| abstract_inverted_index.data. | 51 |
| abstract_inverted_index.dens, | 370 |
| abstract_inverted_index.field | 245 |
| abstract_inverted_index.final | 199 |
| abstract_inverted_index.large | 7 |
| abstract_inverted_index.latin | 107 |
| abstract_inverted_index.makes | 169, 210 |
| abstract_inverted_index.merge | 363 |
| abstract_inverted_index.opens | 269 |
| abstract_inverted_index.plots | 246 |
| abstract_inverted_index.proof | 205 |
| abstract_inverted_index.reach | 214 |
| abstract_inverted_index.table | 88 |
| abstract_inverted_index.these | 53 |
| abstract_inverted_index.three | 3, 6 |
| abstract_inverted_index.times | 136 |
| abstract_inverted_index.total | 216 |
| abstract_inverted_index.trees | 37, 76, 224 |
| abstract_inverted_index.using | 230 |
| abstract_inverted_index.which | 168 |
| abstract_inverted_index.21,000 | 22 |
| abstract_inverted_index.64,000 | 65 |
| abstract_inverted_index.89,000 | 15 |
| abstract_inverted_index.Europe | 259 |
| abstract_inverted_index.France | 11 |
| abstract_inverted_index.Poland | 17 |
| abstract_inverted_index.breast | 144 |
| abstract_inverted_index.cell.- | 139 |
| abstract_inverted_index.cellID | 309 |
| abstract_inverted_index.define | 289 |
| abstract_inverted_index.dens$n | 379 |
| abstract_inverted_index.folder | 294 |
| abstract_inverted_index.forest | 19, 27, 68 |
| abstract_inverted_index.height | 130, 145, 149 |
| abstract_inverted_index.level. | 35 |
| abstract_inverted_index.names- | 108 |
| abstract_inverted_index.number | 110 |
| abstract_inverted_index.raster | 159, 337, 376 |
| abstract_inverted_index.ratios | 241 |
| abstract_inverted_index.state. | 200 |
| abstract_inverted_index.system | 316 |
| abstract_inverted_index.trees. | 112 |
| abstract_inverted_index.unique | 98 |
| abstract_inverted_index.v2.0.0 | 193 |
| abstract_inverted_index.(Bauges | 12 |
| abstract_inverted_index.(Milicz | 18 |
| abstract_inverted_index.100,000 | 61 |
| abstract_inverted_index.Bauges, | 182 |
| abstract_inverted_index.Bauges: | 318 |
| abstract_inverted_index.Geopark | 13 |
| abstract_inverted_index.Milicz, | 186 |
| abstract_inverted_index.Milicz: | 324 |
| abstract_inverted_index.between | 247 |
| abstract_inverted_index.consist | 70 |
| abstract_inverted_index.convert | 336 |
| abstract_inverted_index.creates | 273 |
| abstract_inverted_index.density | 276, 349, 374, 382 |
| abstract_inverted_index.example | 264 |
| abstract_inverted_index.format) | 91, 162 |
| abstract_inverted_index.integer | 116 |
| abstract_inverted_index.mapping | 229 |
| abstract_inverted_index.meaning | 119 |
| abstract_inverted_index.million | 75 |
| abstract_inverted_index.package | 280 |
| abstract_inverted_index.present | 2, 134 |
| abstract_inverted_index.provide | 86, 203 |
| abstract_inverted_index.setwd() | 287 |
| abstract_inverted_index.spatial | 307 |
| abstract_inverted_index.species | 106, 125, 250 |
| abstract_inverted_index.sum(n)) | 361 |
| abstract_inverted_index.systems | 176 |
| abstract_inverted_index.virtual | 56, 83, 156 |
| abstract_inverted_index.Airborne | 47 |
| abstract_inverted_index.European | 8 |
| abstract_inverted_index.Finally, | 201 |
| abstract_inverted_index.Research | 258 |
| abstract_inverted_index.Scanning | 49 |
| abstract_inverted_index.Slovenia | 25 |
| abstract_inverted_index.Sneznik. | 191 |
| abstract_inverted_index.Sneznik: | 330 |
| abstract_inverted_index.cellIDdf | 340 |
| abstract_inverted_index.datasets | 4, 271 |
| abstract_inverted_index.diameter | 127, 142 |
| abstract_inverted_index.district | 20 |
| abstract_inverted_index.multiple | 135 |
| abstract_inverted_index.observed | 242 |
| abstract_inverted_index.possible | 212 |
| abstract_inverted_index.presents | 194 |
| abstract_inverted_index.provide, | 153 |
| abstract_inverted_index.provided | 225 |
| abstract_inverted_index.species. | 80 |
| abstract_inverted_index.specific | 122 |
| abstract_inverted_index.(Snežnik | 26 |
| abstract_inverted_index.Together, | 52 |
| abstract_inverted_index.algorithm | 196, 209, 252 |
| abstract_inverted_index.article). | 260 |
| abstract_inverted_index.broadleaf | 223 |
| abstract_inverted_index.calculate | 347 |
| abstract_inverted_index.cellID25: | 96 |
| abstract_inverted_index.columns:- | 95 |
| abstract_inverted_index.combining | 40 |
| abstract_inverted_index.dataframe | 339, 352 |
| abstract_inverted_index.different | 79, 249 |
| abstract_inverted_index.directory | 286 |
| abstract_inverted_index.following | 94 |
| abstract_inverted_index.generated | 39 |
| abstract_inverted_index.including | 63 |
| abstract_inverted_index.inventory | 41 |
| abstract_inverted_index.landscape | 84 |
| abstract_inverted_index.maintains | 238 |
| abstract_inverted_index.possible. | 172 |
| abstract_inverted_index.presented | 253 |
| abstract_inverted_index.reference | 175, 315 |
| abstract_inverted_index.'cellID25' | 345 |
| abstract_inverted_index.(cellID25) | 167 |
| abstract_inverted_index.(hereafter | 55 |
| abstract_inverted_index.Individual | 36 |
| abstract_inverted_index.associated | 256 |
| abstract_inverted_index.coordinate | 174, 314 |
| abstract_inverted_index.correction | 233 |
| abstract_inverted_index.dataframes | 366 |
| abstract_inverted_index.describing | 5 |
| abstract_inverted_index.landscape, | 157 |
| abstract_inverted_index.landscapes | 9, 54 |
| abstract_inverted_index.proportion | 221 |
| abstract_inverted_index.vegetation | 44 |
| abstract_inverted_index."epsg:2154" | 322 |
| abstract_inverted_index."epsg:2180" | 328 |
| abstract_inverted_index."epsg:3912" | 334 |
| abstract_inverted_index.cellID$dens | 377 |
| abstract_inverted_index.coefficient | 234 |
| abstract_inverted_index.crs(cellID) | 320, 326, 332 |
| abstract_inverted_index.landscapes) | 57 |
| abstract_inverted_index.summarise(n | 359 |
| abstract_inverted_index.I-MAESTRO_data | 293 |
| abstract_inverted_index.library(dplyr) | 282 |
| abstract_inverted_index.library(terra) | 281 |
| abstract_inverted_index.spatialisation | 171 |
| abstract_inverted_index.plot(cellID$dens) | 384 |
| abstract_inverted_index.colnames(cellIDdf) | 343 |
| abstract_inverted_index.group_by(cellID25) | 357 |
| abstract_inverted_index.join_by(cellID25)) | 371 |
| abstract_inverted_index.left_join(cellIDdf, | 369 |
| abstract_inverted_index.as.data.frame(cellID) | 342 |
| abstract_inverted_index.rast('./sneznik/sneznik_cellID25.asc') | 311 |
| abstract_inverted_index.read.csv2('./sneznik/sneznik_trees.csv', | 301 |
| abstract_inverted_index.------------------------------------------------------------# | 278 |
| cited_by_percentile_year | |
| countries_distinct_count | 4 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile |