ICDARTS: Improving the Stability and Performance of Cyclic DARTS Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.00664
This work introduces improvements to the stability and generalizability of Cyclic DARTS (CDARTS). CDARTS is a Differentiable Architecture Search (DARTS)-based approach to neural architecture search (NAS) that uses a cyclic feedback mechanism to train search and evaluation networks concurrently. This training protocol aims to optimize the search process by enforcing that the search and evaluation networks produce similar outputs. However, CDARTS introduces a loss function for the evaluation network that is dependent on the search network. The dissimilarity between the loss functions used by the evaluation networks during the search and retraining phases results in a search-phase evaluation network that is a sub-optimal proxy for the final evaluation network that is utilized during retraining. We present ICDARTS, a revised approach that eliminates the dependency of the evaluation network weights upon those of the search network, along with a modified process for discretizing the search network's \textit{zero} operations that allows these operations to be retained in the final evaluation networks. We pair the results of these changes with ablation studies on ICDARTS' algorithm and network template. Finally, we explore methods for expanding the search space of ICDARTS by expanding its operation set and exploring alternate methods for discretizing its continuous search cells. These experiments resulted in networks with improved generalizability and the implementation of a novel method for incorporating a dynamic search space into ICDARTS.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.00664
- https://arxiv.org/pdf/2309.00664
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386494222
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386494222Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.00664Digital Object Identifier
- Title
-
ICDARTS: Improving the Stability and Performance of Cyclic DARTSWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-01Full publication date if available
- Authors
-
Emily Herron, Derek Rose, Steven R. YoungList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.00664Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.00664Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.00664Direct OA link when available
- Concepts
-
Computer science, Network architecture, Tabu search, Search algorithm, Beam search, Process (computing), Artificial neural network, Set (abstract data type), Artificial intelligence, Machine learning, Data mining, Algorithm, Computer network, Programming language, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386494222 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.00664 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.00664 |
| ids.openalex | https://openalex.org/W4386494222 |
| fwci | 0.0 |
| type | preprint |
| title | ICDARTS: Improving the Stability and Performance of Cyclic DARTS |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.991100013256073 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9871000051498413 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7029565572738647 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C193415008 |
| concepts[1].level | 2 |
| concepts[1].score | 0.520933985710144 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q639681 |
| concepts[1].display_name | Network architecture |
| concepts[2].id | https://openalex.org/C123370116 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5085147619247437 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1424540 |
| concepts[2].display_name | Tabu search |
| concepts[3].id | https://openalex.org/C125583679 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49048492312431335 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q755673 |
| concepts[3].display_name | Search algorithm |
| concepts[4].id | https://openalex.org/C19889080 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4814021587371826 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2835852 |
| concepts[4].display_name | Beam search |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4538889229297638 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43700656294822693 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4257766008377075 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42293471097946167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37166768312454224 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3519485592842102 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2781302332878113 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1396017074584961 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7029565572738647 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/network-architecture |
| keywords[1].score | 0.520933985710144 |
| keywords[1].display_name | Network architecture |
| keywords[2].id | https://openalex.org/keywords/tabu-search |
| keywords[2].score | 0.5085147619247437 |
| keywords[2].display_name | Tabu search |
| keywords[3].id | https://openalex.org/keywords/search-algorithm |
| keywords[3].score | 0.49048492312431335 |
| keywords[3].display_name | Search algorithm |
| keywords[4].id | https://openalex.org/keywords/beam-search |
| keywords[4].score | 0.4814021587371826 |
| keywords[4].display_name | Beam search |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.4538889229297638 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.43700656294822693 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.4257766008377075 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.42293471097946167 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.37166768312454224 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3519485592842102 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.2781302332878113 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/computer-network |
| keywords[12].score | 0.1396017074584961 |
| keywords[12].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.00664 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.00664 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.00664 |
| locations[1].id | doi:10.48550/arxiv.2309.00664 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.00664 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5049465626 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7300-8172 |
| authorships[0].author.display_name | Emily Herron |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Herron, Emily |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070858681 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5217-4374 |
| authorships[1].author.display_name | Derek Rose |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rose, Derek |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029444976 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0591-4330 |
| authorships[2].author.display_name | Steven R. Young |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Young, Steven |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.00664 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ICDARTS: Improving the Stability and Performance of Cyclic DARTS |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4386269615, https://openalex.org/W4390091683, https://openalex.org/W1994919150, https://openalex.org/W58921990, https://openalex.org/W2204575588, https://openalex.org/W2081821176, https://openalex.org/W3022707108, https://openalex.org/W2494989913, https://openalex.org/W2181360821, https://openalex.org/W2146653473 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.00664 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.00664 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.00664 |
| primary_location.id | pmh:oai:arXiv.org:2309.00664 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.00664 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.00664 |
| publication_date | 2023-09-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 28, 62, 95, 101, 117, 137, 213, 218 |
| abstract_inverted_index.We | 114, 159 |
| abstract_inverted_index.be | 152 |
| abstract_inverted_index.by | 48, 83, 186 |
| abstract_inverted_index.in | 94, 154, 204 |
| abstract_inverted_index.is | 14, 70, 100, 110 |
| abstract_inverted_index.of | 9, 124, 131, 163, 184, 212 |
| abstract_inverted_index.on | 72, 169 |
| abstract_inverted_index.to | 4, 21, 32, 43, 151 |
| abstract_inverted_index.we | 176 |
| abstract_inverted_index.The | 76 |
| abstract_inverted_index.and | 7, 35, 53, 90, 172, 191, 209 |
| abstract_inverted_index.for | 65, 104, 140, 179, 195, 216 |
| abstract_inverted_index.its | 188, 197 |
| abstract_inverted_index.set | 190 |
| abstract_inverted_index.the | 5, 45, 51, 66, 73, 79, 84, 88, 105, 122, 125, 132, 142, 155, 161, 181, 210 |
| abstract_inverted_index.This | 0, 39 |
| abstract_inverted_index.aims | 42 |
| abstract_inverted_index.into | 222 |
| abstract_inverted_index.loss | 63, 80 |
| abstract_inverted_index.pair | 160 |
| abstract_inverted_index.that | 26, 50, 69, 99, 109, 120, 147 |
| abstract_inverted_index.upon | 129 |
| abstract_inverted_index.used | 82 |
| abstract_inverted_index.uses | 27 |
| abstract_inverted_index.with | 136, 166, 206 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.(NAS) | 25 |
| abstract_inverted_index.DARTS | 11 |
| abstract_inverted_index.These | 201 |
| abstract_inverted_index.along | 135 |
| abstract_inverted_index.final | 106, 156 |
| abstract_inverted_index.novel | 214 |
| abstract_inverted_index.proxy | 103 |
| abstract_inverted_index.space | 183, 221 |
| abstract_inverted_index.these | 149, 164 |
| abstract_inverted_index.those | 130 |
| abstract_inverted_index.train | 33 |
| abstract_inverted_index.CDARTS | 13, 60 |
| abstract_inverted_index.Cyclic | 10 |
| abstract_inverted_index.Search | 18 |
| abstract_inverted_index.allows | 148 |
| abstract_inverted_index.cells. | 200 |
| abstract_inverted_index.cyclic | 29 |
| abstract_inverted_index.during | 87, 112 |
| abstract_inverted_index.method | 215 |
| abstract_inverted_index.neural | 22 |
| abstract_inverted_index.phases | 92 |
| abstract_inverted_index.search | 24, 34, 46, 52, 74, 89, 133, 143, 182, 199, 220 |
| abstract_inverted_index.ICDARTS | 185 |
| abstract_inverted_index.between | 78 |
| abstract_inverted_index.changes | 165 |
| abstract_inverted_index.dynamic | 219 |
| abstract_inverted_index.explore | 177 |
| abstract_inverted_index.methods | 178, 194 |
| abstract_inverted_index.network | 68, 98, 108, 127, 173 |
| abstract_inverted_index.present | 115 |
| abstract_inverted_index.process | 47, 139 |
| abstract_inverted_index.produce | 56 |
| abstract_inverted_index.results | 93, 162 |
| abstract_inverted_index.revised | 118 |
| abstract_inverted_index.similar | 57 |
| abstract_inverted_index.studies | 168 |
| abstract_inverted_index.weights | 128 |
| abstract_inverted_index.Finally, | 175 |
| abstract_inverted_index.However, | 59 |
| abstract_inverted_index.ICDARTS' | 170 |
| abstract_inverted_index.ICDARTS, | 116 |
| abstract_inverted_index.ICDARTS. | 223 |
| abstract_inverted_index.ablation | 167 |
| abstract_inverted_index.approach | 20, 119 |
| abstract_inverted_index.feedback | 30 |
| abstract_inverted_index.function | 64 |
| abstract_inverted_index.improved | 207 |
| abstract_inverted_index.modified | 138 |
| abstract_inverted_index.network, | 134 |
| abstract_inverted_index.network. | 75 |
| abstract_inverted_index.networks | 37, 55, 86, 205 |
| abstract_inverted_index.optimize | 44 |
| abstract_inverted_index.outputs. | 58 |
| abstract_inverted_index.protocol | 41 |
| abstract_inverted_index.resulted | 203 |
| abstract_inverted_index.retained | 153 |
| abstract_inverted_index.training | 40 |
| abstract_inverted_index.utilized | 111 |
| abstract_inverted_index.(CDARTS). | 12 |
| abstract_inverted_index.algorithm | 171 |
| abstract_inverted_index.alternate | 193 |
| abstract_inverted_index.dependent | 71 |
| abstract_inverted_index.enforcing | 49 |
| abstract_inverted_index.expanding | 180, 187 |
| abstract_inverted_index.exploring | 192 |
| abstract_inverted_index.functions | 81 |
| abstract_inverted_index.mechanism | 31 |
| abstract_inverted_index.network's | 144 |
| abstract_inverted_index.networks. | 158 |
| abstract_inverted_index.operation | 189 |
| abstract_inverted_index.stability | 6 |
| abstract_inverted_index.template. | 174 |
| abstract_inverted_index.continuous | 198 |
| abstract_inverted_index.dependency | 123 |
| abstract_inverted_index.eliminates | 121 |
| abstract_inverted_index.evaluation | 36, 54, 67, 85, 97, 107, 126, 157 |
| abstract_inverted_index.introduces | 2, 61 |
| abstract_inverted_index.operations | 146, 150 |
| abstract_inverted_index.retraining | 91 |
| abstract_inverted_index.experiments | 202 |
| abstract_inverted_index.retraining. | 113 |
| abstract_inverted_index.sub-optimal | 102 |
| abstract_inverted_index.Architecture | 17 |
| abstract_inverted_index.architecture | 23 |
| abstract_inverted_index.discretizing | 141, 196 |
| abstract_inverted_index.improvements | 3 |
| abstract_inverted_index.search-phase | 96 |
| abstract_inverted_index.(DARTS)-based | 19 |
| abstract_inverted_index.\textit{zero} | 145 |
| abstract_inverted_index.concurrently. | 38 |
| abstract_inverted_index.dissimilarity | 77 |
| abstract_inverted_index.incorporating | 217 |
| abstract_inverted_index.Differentiable | 16 |
| abstract_inverted_index.implementation | 211 |
| abstract_inverted_index.generalizability | 8, 208 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |