Higher Frobenius-Schur indicators for pivotal categories Article Swipe
Related Concepts
Endomorphism
Mathematics
Monoidal category
Functor
Closed monoidal category
Pure mathematics
Symmetric monoidal category
Frobenius algebra
Enriched category
Algebra over a field
Algebra representation
Peter Schauenburg
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.14288/1.0044472
· OA: W1868028681
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.14288/1.0044472
· OA: W1868028681
We define higher Frobenius-Schur indicators for objects in linear pivotal monoidal categories. We prove that they are category invariants, and take values in the cyclotomic integers. We also define a family of natural endomorphisms of the identity endofunctor on a $k$-linear semisimple rigid monoidal category, which we call the Frobenius-Schur endomorphisms. For a $k$-linear semisimple pivotal monoidal category -- where both notions are defined --, the Frobenius-Schur indicators can be computed as traces of the Frobenius-Schur endomorphisms.
Related Topics
Finding more related topics…