22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector Article Swipe
Related Concepts
Materials science
Silicon
Amorphous silicon
Optoelectronics
Solar cell
Heterojunction
Annealing (glass)
Molybdenum
Polymer solar cell
Quantum dot solar cell
Copper indium gallium selenide solar cells
Doping
Oxide
Nanocrystalline silicon
Amorphous solid
Crystalline silicon
Metallurgy
Chemistry
Organic chemistry
Jonas Geissbühler
,
Jérémie Werner
,
Silvia Martín de Nicolás
,
Loris Barraud
,
Aïcha Hessler‐Wyser
,
Matthieu Despeisse
,
Sylvain Nicolay
,
Andrea Tomasi
,
Bjoern Niesen
,
Stefaan De Wolf
,
Christophe Ballif
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1063/1.4928747
· OA: W1876525337
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1063/1.4928747
· OA: W1876525337
Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.
Related Topics
Finding more related topics…