Experimental Tracking of Limit-Point Bifurcations and Backbone Curves Using Control-Based Continuation Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1142/s0218127417300026
· OA: W2562523358
Control-based continuation (CBC) is a means of applying numerical continuation directly to a physical experiment for bifurcation analysis without the use of a mathematical model. CBC enables the detection and tracking of bifurcations directly, without the need for a post-processing stage as is often the case for more traditional experimental approaches. In this paper, we use CBC to directly locate limit-point bifurcations of a periodically forced oscillator and track them as forcing parameters are varied. Backbone curves, which capture the overall frequency-amplitude dependence of the system’s forced response, are also traced out directly. The proposed method is demonstrated on a single-degree-of-freedom mechanical system with a nonlinear stiffness characteristic. Results are presented for two configurations of the nonlinearity — one where it exhibits a hardening stiffness characteristic and one where it exhibits softening-hardening.