OPERATOR ALGEBRAIC APPROACH TO INVERSE AND STABILITY THEOREMS FOR AMENABLE GROUPS Article Swipe
Related Concepts
Mathematics
Amenable group
Von Neumann architecture
Inverse
Unitary state
Countable set
Von Neumann algebra
Invariant (physics)
Pure mathematics
Norm (philosophy)
Algebraic number
Algebra over a field
Operator norm
Discrete mathematics
Operator theory
Mathematical analysis
Geometry
Law
Political science
Mathematical physics
Marcus De Chiffre
,
Narutaka Ozawa
,
Andreas Thom
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1112/s0025579318000335
· OA: W2626858973
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1112/s0025579318000335
· OA: W2626858973
We prove an inverse theorem for the Gowers $U^2$-norm for maps $G\\to\\mathcal\nM$ from an countable, discrete, amenable group $G$ into a von Neumann algebra\n$\\mathcal M$ equipped with an ultraweakly lower semi-continuous, unitarily\ninvariant (semi-)norm $\\Vert\\cdot\\Vert$. We use this result to prove a\nstability result for unitary-valued $\\varepsilon$-representations $G\\to\\mathcal\nU(\\mathcal M)$ with respect to $\\Vert\\cdot \\Vert$.\n
Related Topics
Finding more related topics…