GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1103/physrevlett.119.141101
· OA: W2756512191
On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mo>≲</a:mo><a:mn>1</a:mn></a:math> in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:mn>30.</c:mn><c:msubsup><c:mrow><c:mn>5</c:mn></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>3.0</c:mn></c:mrow><c:mrow><c:mo>+</c:mo><c:mn>5.7</c:mn></c:mrow></c:msubsup><c:msub><c:mrow><c:mi>M</c:mi></c:mrow><c:mrow><c:mo stretchy="false">⊙</c:mo></c:mrow></c:msub></c:mrow></c:math> and <f:math xmlns:f="http://www.w3.org/1998/Math/MathML" display="inline"><f:mn>25</f:mn><f:mo>.</f:mo><f:msubsup><f:mn>3</f:mn><f:mrow><f:mo>−</f:mo><f:mn>4.2</f:mn></f:mrow><f:mrow><f:mo>+</f:mo><f:mn>2.8</f:mn></f:mrow></f:msubsup><f:msub><f:mrow><f:mi>M</f:mi></f:mrow><f:mrow><f:mo stretchy="false">⊙</f:mo></f:mrow></f:msub></f:math> (at the 90% credible level). The luminosity distance of the source is <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mrow><i:mn>54</i:mn><i:msubsup><i:mrow><i:mn>0</i:mn></i:mrow><i:mrow><i:mo>−</i:mo><i:mn>210</i:mn></i:mrow><i:mrow><i:mo>+</i:mo><i:mn>130</i:mn></i:mrow></i:msubsup><i:mtext> </i:mtext><i:mtext> </i:mtext><i:mi>Mpc</i:mi></i:mrow></i:math>, corresponding to a redshift of <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mi>z</k:mi><k:mo>=</k:mo><k:mn>0.1</k:mn><k:msubsup><k:mn>1</k:mn><k:mrow><k:mo>−</k:mo><k:mn>0.04</k:mn></k:mrow><k:mrow><k:mo>+</k:mo><k:mn>0.03</k:mn></k:mrow></k:msubsup></k:math>. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:mn>1160</m:mn><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mrow><m:msup><m:mrow><m:mi>deg</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msup></m:mrow></m:mrow></m:math> using only the two LIGO detectors to <o:math xmlns:o="http://www.w3.org/1998/Math/MathML" display="inline"><o:mrow><o:mn>60</o:mn><o:mtext> </o:mtext><o:mtext> </o:mtext><o:mrow><o:msup><o:mrow><o:mi>deg</o:mi></o:mrow><o:mrow><o:mn>2</o:mn></o:mrow></o:msup></o:mrow></o:mrow></o:math> using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity. Published by the American Physical Society 2017