GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1103/physrevlett.119.161101
· OA: W2765081049
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mrow><a:mn>8.0</a:mn><a:mo>×</a:mo><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mn>4</a:mn></a:mrow></a:msup></a:mrow><a:mtext> </a:mtext><a:mtext> </a:mtext><a:mi>years</a:mi></a:mrow></a:math>. We infer the component masses of the binary to be between 0.86 and <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:mn>2.26</c:mn><c:mtext> </c:mtext><c:mtext> </c:mtext><c:msub><c:mrow><c:mi>M</c:mi></c:mrow><c:mrow><c:mo stretchy="false">⊙</c:mo></c:mrow></c:msub></c:mrow></c:math>, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range <f:math xmlns:f="http://www.w3.org/1998/Math/MathML" display="inline"><f:mrow><f:mn>1.17</f:mn><f:mi>–</f:mi><f:mn>1.60</f:mn><f:mtext> </f:mtext><f:mtext> </f:mtext><f:msub><f:mrow><f:mi>M</f:mi></f:mrow><f:mrow><f:mo stretchy="false">⊙</f:mo></f:mrow></f:msub></f:mrow></f:math>, with the total mass of the system <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mrow><i:mn>2.7</i:mn><i:msubsup><i:mrow><i:mn>4</i:mn></i:mrow><i:mrow><i:mo>−</i:mo><i:mn>0.01</i:mn></i:mrow><i:mrow><i:mo>+</i:mo><i:mn>0.04</i:mn></i:mrow></i:msubsup><i:msub><i:mrow><i:mi>M</i:mi></i:mrow><i:mrow><i:mo stretchy="false">⊙</i:mo></i:mrow></i:msub></i:mrow></i:math>. The source was localized within a sky region of <l:math xmlns:l="http://www.w3.org/1998/Math/MathML" display="inline"><l:mrow><l:mn>28</l:mn><l:mtext> </l:mtext><l:mtext> </l:mtext><l:mrow><l:msup><l:mrow><l:mi>deg</l:mi></l:mrow><l:mrow><l:mn>2</l:mn></l:mrow></l:msup></l:mrow></l:mrow></l:math> (90% probability) and had a luminosity distance of <n:math xmlns:n="http://www.w3.org/1998/Math/MathML" display="inline"><n:mrow><n:mrow><n:mn>4</n:mn><n:msubsup><n:mrow><n:mn>0</n:mn></n:mrow><n:mrow><n:mo>−</n:mo><n:mn>14</n:mn></n:mrow><n:mrow><n:mo>+</n:mo><n:mn>8</n:mn></n:mrow></n:msubsup><n:mtext> </n:mtext><n:mtext> </n:mtext></n:mrow><n:mrow><n:mi>Mpc</n:mi></n:mrow></n:mrow></n:math>, the closest and most precisely localized gravitational-wave signal yet. The association with the <p:math xmlns:p="http://www.w3.org/1998/Math/MathML" display="inline"><p:mi>γ</p:mi></p:math>-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short <r:math xmlns:r="http://www.w3.org/1998/Math/MathML" display="inline"><r:mi>γ</r:mi></r:math>-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology. Published by the American Physical Society 2017