Parallel magnetic field suppresses dissipation in superconducting nanostrips Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1073/pnas.1619550114
· OA: W2770705290
Significance Absolute zero resistance of superconducting materials is difficult to achieve in practice due to the motion of microscopic Abrikosov vortices, especially when external currents are applied. Even a partial resistance reduction via vortex immobilization by microscopic material imperfections is the holy grail of superconductivity research. It is commonly believed that the dissipation increases with applied magnetic field since the number of vortices increases as well. Through the example of molybdenum–germanium superconducting nanostrips, we show that resistive losses due to vortex motion can actually be decreased by applying an increasing applied magnetic field parallel to the current. This surprising recovery of superconductivity is achieved through “vortex crowding”: The increased number of vortices impedes their mutual motion, resulting in straight, untwisted vortices.