Existence of positive solutions for a class of semipositone quasilinear problems through Orlicz-Sobolev space Article Swipe
Related Concepts
Omega
Sobolev space
Bounded function
Domain (mathematical analysis)
Space (punctuation)
p-Laplacian
Operator (biology)
Class (philosophy)
Mathematics
Combinatorics
Function (biology)
Laplace operator
Type (biology)
Pure mathematics
Mathematical analysis
Continuous function (set theory)
Mountain pass theorem
Physics
Nonlinear system
Quantum mechanics
Repressor
Evolutionary biology
Chemistry
Biology
Boundary value problem
Biochemistry
Transcription factor
Philosophy
Linguistics
Gene
Computer science
Artificial intelligence
Ecology
Claudianor O. Alves
,
Angelo R. F. de Holanda
,
Jefferson A. Santos
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1090/proc/14212
· OA: W2806555343
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1090/proc/14212
· OA: W2806555343
In this paper we show the existence of weak solutions for a class of semipositone problems of the type \begin{equation}\tag {P} \left \{ \begin {array}{rclcl} -\Delta _{\Phi } u & = & f(u)-a & \mbox {in} & \Omega , \\ u(x)& > & 0 & \mbox {in} & \Omega , \\ u & = & 0 & \mbox {on} & \partial \Omega , \\ \end{array} \right . \end{equation} where $\Omega \subset \mathbb {R}^{N}$, $N \geq 2$, is a smooth bounded domain, $f:[0,+\infty ) \to \mathbb {R}$ is a continuous function with subcritical growth, $a>0$, and $\Delta _{\Phi } u$ stands for the $\Phi$-Laplacian operator. By using variational methods, we prove the existence of a solution for $a$ small enough.
Related Topics
Finding more related topics…